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Appendix 2: Cross-case Analyses 

 

I. Aplusix cross-case analysis 

I.1. Identification 

The teams involved are:  

UJF team (France): familiar DDA  

ITD team (Italy): alien DDA 

UNISI team (Italy): alien DDA  

DDA considered: 

I.2. Contextual elements 

School level: 

 28 students Grade 10 (15-16 years) – UJF 

 2 classes (26 students and 29 students) Grade 9 (14-15 years) – UNISI  

 14 Students of Grade 7 (11-12 years) – ITD 

Physical context: 

 Classroom equipped with computers, overhead projector. 

 Students work in pairs. 

For UNISI and ITD: Students were sometimes involved in collective discussions 

Length of the scenario: 

 UJF: 5,5 hours 

 UNISI: 18 hours 

 ITD: 10 hours 

The teacher involved in the ITD experiment took part to the design of the experiment collaborating 
with the ITD team. The experiment was designed to be inserted in the curriculum of the class. It 
was well accepted by the institutional context of the school. 

The teacher involved in the UJF experiment didn’t take part to the design of the scenario but he had 
a possibility to adapt it to the constraints of his class. 

Two teachers were involved in the UNISI experiment. One of them took part to the design of the 
experiment and she was supposed to be familiar with the use of technology in class because she has 
been part of the group for years. The other teacher was a young teacher who hadn’t collaborated 
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with the team before. She didn’t participate to the design of the experiment, but she only 
implemented it in classroom. 

I.3. Theoretical frames  

The three teaching experiments share a common semiotic concern and the theoretical construct of 
Semiotic register of representation (Duval, 1995, 2006) can be considered a common component 
of the three theoretical frameworks. In this perspective, three semiotic registers are used in each PP: 
standard representation (SR), tree representation (TR) and natural language representation (NL). A 
common hypothesis concerns the role of conversion tasks to make the meaning of structure of an 
algebraic expression emerge. Further elaborations of this semiotic approach are developed in the 
three different theoretical frameworks assumed by each team and presented in the following. 

UJF used the Anthropological Theory of Didactics (Chevallard, 1999). He identifies 6 moments in 
studying a given type of task (what he calls didactic organisation): (1) first encounter with the type 
of task, (2) exploring the type of task and emergence of a technique, (3) constructing the 
technological-theoretical unit, (4) institutionalisation, (5) working out the technique, and (6) 
assessment. The familiar PP is organized in accordance with such a didactic organization 

UNISI used the Semiotic Mediation Theory (Bartolini Bussi & Mariotti, 2008) A basic assumption 
of the theory is that mathematical meanings are rooted in the action with the artefact, and developed 
through social interaction in classroom. Identifying the semiotic potential of an artefact is the 
starting point for developing a teaching/learning sequence which involves the use of such artefact. 
This means to identify the potential that an artefact has with respect to some mathematical 
meanings, in relation to the tasks in which it is used. Referring to the alien PP, feedback signs 
provided by Aplusix have been considered as having a semiotic potential respect to the meaning of 
equivalence of expressions. 

ITD used the Activity Theory (Cole & Engeström, 1991). According to this theory, learning can 
emerge overcoming contradictions that can appear during educational activities. The tasks of the 
ITD’s PP are designed to be source of contradiction through the comparison of solutions performed 
in paper and pencil and the solutions performed in Aplusix. Feedback provided by Aplusix is 
crucial to make emerge this contradiction. 

I.4. Comparison of didactical functionalities 

The educational goal 
Among the educational goals of the three experiments a common element is constituted by the 
achievement of what is called structure sense (Hoch and Dreyfus, 2006). 

“A student is said to display structure sense for high school algebra if s/he can: 
· Recognise a familiar structure in its simplest form.  
· Deal with a compound term as a single entity, and through an appropriate substitution 
recognise a familiar structure in a more complex form. 
· Choose appropriate manipulations to make best use of a structure.” 
(Hoch and Dreyfus, 2006) 
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The achievement of this common educational goal is related to the basic meaning on which the 
algebraic calculation is rooted: the equivalence between algebraic expressions. In fact, the 
equivalence between expressions ‘passes through’ different structures. 

The characteristics of Aplusix  
Aplusix is a computer algebra system which allows students to perform both arithmetical and 
algebraic calculations (Nicaud & al., 2004). Adopting the terminology introduced by Duval (1995, 
2006), Aplusix offers three different registers of representation of algebraic expressions on which 
to act: natural language, standard representation, which is the usual representation of expressions in 
paper and pencil, and tree representation1. 

Three modes of tree editing have been implemented into Aplusix: free tree mode, controlled tree 
mode, and mixed tree mode. While in free tree mode, expressions can be edited freely as trees and 
no constraints on the tree are provided during the editing process, in the controlled tree mode the 
system provides constraints to the editing process, preventing the user from constructing 
syntactically incorrect trees. For instance, because the arity of operators must be correct, it is not 
possible to build a tree made of three branches with the minus sign as operator. Both in free and 
controlled modes, the system only accepts trees in which internal nodes are operators and leaves are 
numbers or variables. The mixed tree mode constitutes a hybrid representation that combines both 
the standard and the tree representations. In fact, a standard representation can be expanded as a tree 
by clicking on the “+” button that appears when the mouse cursor is on the left side of a node (Fig. 
1a, b); vice versa, a tree, or a sub-tree, can be collapsed into a standard representation by clicking on 
the “-” button (Fig. 1c). Thus, mixed representation presents a scaffolding feature, besides the 
syntactical constraints that characterise the controlled mode. 

 

 

 

Fig. 1a. 

 

Fig. 1b. 

 

Fig. 1c. 

Figure 1. Mixed tree representation: (a) the expression (x-2)(2x+1) in standard 
representation can be developed into a tree by clicking on the “+” button; (b) the 

expression after a first level development;  

(c) “-“ button allows collapsing the tree into standard representation, as in Fig. 1a. 

 

                                                 
1 The tree representation has been implemented in the new module developed within the ReMath project. 
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All the tasks in Aplusix, can be performed both in training and in test mode. The training mode is 
characterized by a feedback provided by the DDA. The feedback is based on the on the equivalence 
between the algebraic expressions produced in two consequent steps. Feedback2 is expressed by 
means of three different signs (Fig. 2). 

   

Figure 2. Three different feedbacks provided in Aplusix environment during the 
training activity. 

The black lines point out that the expressions are equivalent, the red crossed lines that they are not 
equivalent, and the blue crossed lines indicate that the edited expression is not well formed (e.g., in 
Fig. 2, the last term has not been entered yet). In the test activity, no feedback is provided: at each 
stage a single black line links two consequent steps. Finally, the observation modality allows the 
student, the teacher or the researcher to replay the whole sequence of steps performed by the user in 
order to solve the task. The comparison between the three Teaching Experiments presented in this 
paper focuses on the DDA feature consisting in the feedback provided in the training activity. 

The modalities of employment 
Though starting from common educational goals, the great variety of possible choices offered by 
Aplusix features - two modes of feedback control, three modalities of tree editing, …- provided a 
variety of modes of use. Actually, in the design of the PPs, the three teams showed a great variety of 
choices that can be explained according to the three different theoretical perspectives they refer to.  

In the following, the familiar PP and two alien PPs are compared highlighting the different 
modalities of use of the feedback as they are developed in the three experiments. The familiar PP 
(UJF team) refers to the Anthropological Theory of Didactics (Chevallard, 1999); one of the alien 
PP (UNISI team) has the Semiotic Mediation (Bartolini Bussi & Mariotti, 2008) as a leading theory 
of reference and the other PP (ITD team) has been designed following the Activity theory 
framework. 

I.5. Results of the cross-case analysis together with illustrative 
examples 

The UJF pedagogical plan and its results 
The familiar PP has been designed to be experimented by teachers who use Aplusix at a regular 
basis in their classrooms. Therefore the students are familiar with the system, apart from the tree 
representation of expressions that is novel for them. Starting from the assumption that tree 
representation of algebraic expressions highlights their structure, the main educational goal of the 

                                                 
2 The feedback can be provided either permanently, or on demand, or can be limited to two or four verifications during 
the solving process. 
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PP is to use this representation to study the structural aspect of algebraic expressions and thus help 
students to distinguish between procedural and structural aspects of expressions. The core of the PP 
is organized in three main phases:  

 familiarization phase, which is guided by the teacher who introduces the tree representation 
through the mixed representation. Starting from a simple expression in standard 
representation, she/he expands the nodes so as to obtain a tree (a controlled tree); 

 interaction between natural language and tree representations; 

 interaction between usual and tree representations. 

In the phases 2 and 3, students will first encounter controlled tree mode. Thus, they cannot make 
syntactical errors in building trees, since the constraints of the software will prevent them from 
doing so. Later, students are proposed similar tasks in the free tree mode, i.e., there are no 
constraints during the editing process, but the students benefit from the feedback provided by the 
system allowing them to check the correctness of their solutions. 

The choice of making students deal first with controlled trees in most of the sessions of the PP and 
encounter the free trees afterwards can be explained according to the adopted theoretical 
framework, which is Chevallard’s Anthropological theory of didactics (Chevallard, 1999). 

In fact, Chevallard identifies 6 moments in what he calls didactic organisation, accordingly, six 
types of task in studying a given type of task (what he calls didactic organisation): (1) first 
encounter with the type of task, (2) exploring the type of task and emergence of a technique, (3) 
constructing the technological-theoretical unit, (4) institutionalisation, (5) working out the 
technique, and (6) assessment. The familiar PP is organized in accordance with such a didactic 
organization. During the familiarization phase, for the first time (moment 1), the students will 
encounter the tree representation, and more specifically the task of conversion of an algebraic 
expression given in a standard representation into a tree. The teacher will be orchestrating the class 
discussion aiming at making the way the tree is developed emerge (moment 2). Several examples of 
algebraic expressions involving different operators are worked out by the students and collectively 
discussed, under the teacher’s orchestration (moment 3). The familiarization process will end by an 
institutionalisation phase where the appropriate vocabulary is introduced and the technique of 
building a tree is formulated (moment 4). In the next session, the students are given tasks consisting 
in building trees representing expressions given either in natural language or in standard 
representation. They are supposed to work first in the controlled mode. This moment corresponds to 
the moment 5 in Chevallard’s didactic organization. Since students are requested to solve a new 
type of task for the first time on their own, supporting them with a kind of scaffolding coming from 
the functioning of controlled mode (that is preventing them from committing syntax errors) seems 
to be promising. Afterwards, similar tasks will be given to the students, but this time they will work 
in free tree mode, hence they will not benefit from scaffolding anymore. This choice is motivated 
by our wish to assess students’ mastery both of the tree representation and of conversion tasks 
(moment 6). The following example shows how the controlled mode may assist the student in 
building a tree representation of an algebraic expression given by a description in natural language. 
In solving the task ‘build a tree corresponding to the expression “y squared”’, a student proceeded 
as shown in figure 3 . 
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The student entered the symbol “^” which is used in Aplusix for the power operator. The system 
created two branches with question marks as leaves (Fig. 3a). In the first attempt, the student 
seemed to be proceeding from left to right (in French, the expression is read “carré de y”, i.e., 
“square of y”). Thus, he entered 2 to the left hand branch and y to the right hand one (Fig. 3b). 
Observing the feedback provided by Aplusix, he realised that the tree was not correct. The second 

attempt (Fig. 3c) can be seen either as the student’s interpretation of y² as yy, or as the 
intermediate step towards the correct tree obtained in the third attempt (Fig. 3d).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3. Three attempts to build a tree representation of the expression “y squared”. 

This example shows that such scaffolding can help students master more easily and quickly the new 
register and conversion tasks, so that they will be ready to approach new kinds of tasks, namely 
treatment and formation tasks (Duval, 1995). 

The UNISI pedagogical plan and its results 
The alien PP is underpinned by a theory of Vygotskian perspective called Theory of Semiotic 
Mediation (Bartolini Bussi & Mariotti, 2008), which aims at modelling the teaching-learning 
processes based on the use of artefacts.  

A basic assumption of the theory is that mathematical meanings are rooted in the action with the 
artefact, and developed through social interaction in classroom. Identifying the semiotic potential of 
an artefact is the starting point for developing a teaching/learning sequence which involves the use 
of such artefact. This means to identify the potential that an artefact has with respect to some 
mathematical meanings, in relation to the tasks in which it is used. Referring to the alien PP, 
feedback signs provided by Aplusix have been considered as having a semiotic potential with 
respect to the meaning of equivalence of expressions. However, the semiotic mediation function of 
an artefact is not automatically activated by the use of an artefact: it’s up to the teacher, who has the 
awareness of the semiotic potential of the artefact in terms of mathematical meanings, to foster the 
process of production and evolution of signs centred on the use of an artefact. 

Within this theoretical perspective, in the UNISI’s PP the first encounter with the software is 
devoted to make students conscious of the different kinds of signs provided by the DDA. According 
to Peirce (Peirce, 1931), a sign consists of three components: the sign or representamen (that 
represents), the object (that is represented), and the interpretant (that is related to the interpretation 
process). A basic assumption is that the object can never present itself directly to a knower: it is 
always mediated by a sign, of which the object is the referent. Such a frame is particularly suitable 
to analyse how we deal with mathematics, an abstract discipline in which the "objects" are treated 
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through signs. In our specific case, this reference frame appears suitable for analysing the signs 
provided by Aplusix as feedbacks to the students' actions, and related to the mathematical meaning 
of equivalence between algebraic expressions.  

The feedback-signs provided by Aplusix have a twofold meaning. We can refer to them using the 
terms primary interpretation and developed interpretation. Let us consider the sign ‘red crossed 
lines’. Its meaning is rooted in a social convention which can be reinterpreted in the school context; 
in fact, both presences of the colour red in the inscription refer to the sign of error which have the 
red colour and the cross in the set of its representations. Whereas the primary interpretation could 
refer to common sense, the developed encoding refers to a mathematical knowledge and for its 
nature it is not immediate or immediately shared. Since the reaction of the machine is coherent with 
the mathematical knowledge at all times, that makes the feedback-signs a possible instrument of 
semiotic mediation for the meaning of equivalence between algebraic expressions. 

The link between the developed interpretation of the feedback signs is not automatic, but it indeed 
requires the mediation of the teacher to be developed. 

This issue is addressed since the first encounter with the software, in the familiarization phase. 
After some brief instructions on how to open files in Aplusix and typing expressions, students are 
requested to accomplish a task of numerical computation. Students are also asked to interpret the 
different signs appearing on the screen. Specifically they are asked to take note on a sheet of paper 
of how such signs change during the solution of the tasks within Aplusix, and attempt a possible 
interpretation. Fig. 4 reports an example of students' answers to the question "Try to explain the 
meaning of each of the signs that appear between two lines while you are editing": 

 

Figure 4. When the exercise is correct this sign appears. 
When the exercise is not correct, is wrong. 

When the exercise is not completed. 
Then, during a collective discussion orchestrated by the teacher, students’ interpretations of the 
feedback signs are shared while their mathematical meaning is expected to emerge in relation to the 
notion of equivalence.  

The tree representation is introduced in the subsequent activity. The idea is that the new signs will 
be coordinated with the old ones; in particular, the standard representation system will be put into 
relation with the tree representation system, while the control signs system, interacting with both of 
them is expected to fundamentally contribute to build and consolidate the meanings related to 
algebraic expressions. These two activities are followed by another classroom discussion, which 
concludes the familiarization phase. The discussion plays an essential part in the PP: the teacher has 
the responsibility to guide the evolution of meanings emerging in the activity with the DDA 
towards meanings that are consistent with the mathematical theory. In one of the classrooms 
observed during the teaching experiment, many students interpreted the feedbacks of Aplusix as 
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shown in Fig. 4, i.e. they interpreted black lines as indicating ‘correct’ exercise, red crossed lines as 
indicating ‘incorrect’ exercise, and blue crossed line as indicating ‘incomplete’ exercise. The 
reference to mathematical meaning slowly emerged after the intervention of the teacher. 

By analysing students' ongoing production through semiotic lens, we have been able to identify key 
elements that provide evidence of the role played by Aplusix components, in particular by the 
feedback, both in students’ learning processes, and in the teaching strategy.  

We report on an excerpt from a collective discussion that followed the first activity with the DDA. 
Students are requested to work in pairs in Aplusix to accomplish a task of numerical calculation. As 
already said, when the students manipulate an expression, Aplusix constantly provides a feedback 
related to the mathematical meaning of equivalence between expressions. The link between such 
kinds of feedback and its mathematical meaning is not automatic, but it is indeed a matter of 
interpretation. It is just to stress their semiotic nature that we have introduced the term feedback-
signs. The main goal of this first activity consists in making students interpret the three feedback-
signs; students are therefore requested to observe the feedback given by Aplusix during calculation 
tasks. They are also asked to take note on a sheet of paper of how the feedback-signs change during 
the development of the calculation, providing a meaning for each of them. In the collective 
discussion following the activity with the artefact, the teacher aims at exploiting the semiotic 
potential of the feedback-signs and intends on making the students aware of the mathematical 
meanings of the feedback-signs. Here after an excerpt from the discussion. 

Excerpt 1 

 

1. Teacher:  Have you all 
finished? There were four questions, 
the first asked to note down the 
signs appearing between a line 
(gesture as in Fig. 5 on the left) and 
the following one, What are the 
signs appearing between a line and 
the following one? gesture as in 
(Figure 5 on the right) . 

2. Mattia: The first sign appearing 
when you write in the second passage, is…two vertical lines with an x over them (gestures as in 
Fig. 6). 

3. Teacher:  an x, two 
vertical lines with an x over 
them. 

4. Davide: parallel. 

5. Mattia: and then, when you 
complete the passage, the x 
disappears. 

Figure 5. The teacher’s hand as picking something at two 
different heights. 

Figure 6. Mattia draws two vertical lines top-down in the 

air indicating the feedback-sign “||". 
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6. Teacher: the x disappears. Is what he has said right? (The teacher draws on the blackboard the 
three signs) […] 

19. Amalia: Well, there are three signs…well, those two vertical lines are when the passage is right 
and concluded […] 

39. Teacher: What does it mean "to be right"? 

40. Martina: That you didn’t make any mistakes in the calculations. 

41. Amalia: That you have not mistaken anything and you can go to the following passage […] 

60. Teacher: And how can we do that not using the computer, understand that things are right 
without seeing the signs? Why are they right? 

61. Ambra: Because if the calculation follows a logical thread, it is right. 

62. Teacher: Because if the calculation follows a logical thread, it is right. What does it mean to 
follow a logical thread? 

63. Martina: To do certain operations […] 

66. Teacher: Why are passages right? What does it mean to have the passages right? Where does the 
logical thread lead? […] 

67. Amalia: Because basically the last passage must give you the result of the first one. 

68. Teacher: The last passage must give you the result of the first one: what does it mean? 

69. Amalia: Yes because basically if you solve the first passage the result must be…equal to the 
second. 

70. Teacher: Let's help her to say it well […] 

73. Valentina: Yes because finally the result is the simplification of the first, each passage has the 
same result. 

74. Teacher: and so? 

75. Amalia: Basically, if we have…I don't know…6/3 and we reduce it to the minimal terms it 
comes 2, doesn't it? (The teacher writes on the blackboard 6/3 and 2, side each other) So I tell that 
2 is the result of the first passage […] 

79. Teacher: […] How do we say that the result of 6/3 is 2? In mathematics, when we speak, how 
can we say that the result of 6/3 is 2? 

80. Cora: That the result of 6 divided by 3 gives 2. 

81. Teacher: Yes, but…what do we say of these two (pointing to 
6/3 and 2 with the two hands, Fig. 7) here? 

Figure 7. The teacher pointing 

to 6/3 and 2. 
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82. Valentina: That they are equivalent to each other 

83. Teacher: That? 

84. Valentina: Yes, that they are equivalent to one another, they are equivalent. 

85. Teacher: And what does it mean that they are equivalent? 

86. Amalia: That they are equal…  

87. Students: That they have the same value. 

From the beginning of the discussion the teacher focuses attention on the interpretation of the 
feedback-signs of Aplusix (#1). As emerging from the discussion (#1-19), and confirmed by the 
collected written sheets, all the students' interpret the feedback-sign as "right passage" (see #19: 
“Two vertical lines […] when the passage is right and concluded”). The personal meanings that 
students develop from the first activity with the artefact are consistent with the primary 
interpretation of the feedback. According to the classification provided by the Theory of Semiotic 
Mediation, the inscription “||" can be considered an artefact-sign, since its meaning is strictly 
related to the activity with the artefact. Under the guidance of the teacher it becomes the first 
element of a semiotic chain leading to the mathematical sign, referring to the notion of equivalence. 
Once it happened, the feedback-sign “||” has reached the level of the developed interpretation. In 
fact in the excerpt we can observe the following evolution for the interpretation of Aplusix 
feedback-sign “||”: 

right / no mistakes (#19-41) becomes passages with the same result (#67-73) becomes equivalence 
between passages (#82-84) 

This semiotic chain comes into existence thanks to a didactic strategy that starting from the activity 
with the artefact is focused on the students’ semiotic processes. This strategy uses, in a synergic 
way, different kinds of semiotic resources: speech, gestures (an example is in #1, Fig. 6, and the 
same kind of gesture-speech enactment is widespread in the whole protocol), and inscriptions on the 
blackboard (#81, Fig. 7). In particular, the teacher constantly stimulates the students to make the 
meanings of the involved signs explicit (‘what does it mean?’, #39, 62, 66, 68), to elaborate from 
the emerging contributions (‘Let's help her to say it well’, #70; ‘and so?’, #74), and to detach from 
the artefact (‘how can we do that not using the computer’, #60) to relate to mathematics domain (‘in 
mathematics, when we speak, how can we say that’, #79). Beyond the recurrent typical semiotic 
question “what does it mean”, the teacher’s strategy encompasses sentences and actions that have 
the functions of echoing and amplifying some students’ contributions to the whole classroom (#3, 6, 
62, 68, 83), and generally focusing attention towards certain elements (see for instance the deictic 
gesture in Fig. 7). By repeating and re-formulating students' contributions on the one hand, and 
making explicit reference to mathematics domain on the other hand, the teacher fosters the weaving 
of a texture of meanings in which the meaning of equivalence comes to be sided and overlapped to 
that of the right passage. This double interpretation of the feedback-signs emerging from Aplusix is 
the core of the semiotic potential of this specific feature of the software in solving a given task. In 
the following excerpt, from a discussion occurring a week later, we can see how this texture of 
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meaning is correctly managed by the students and referred to the artefact-signs (‘black equal’ and 
‘red equal’). 

Excerpt 2 

1. Mattia:  Aplusix uses some symbols, for instance when we 
write, and make a new passage: when we finish writing the 
passage, if the passage is equivalent to the previous one, and 
therefore it is right, we have a symbol telling us that it is right, 
whereas if the passage that we have written is wrong with respect 
to the previous passage, we have another symbol. 

2. Teacher: So he is saying that if we have two different 
expressions that are equivalent then we have in Aplusix a symbol 
that is? 

3. Davide:  the black equal  

4. Teacher: the black equal, two bars (gesture as in Fig. 8). If on the contrary these two 
expressions are not equivalent 

5. Davide:  it comes the red equal 

As in many other cases in the protocols (see also above) we observe how the teacher uses, in a 
synergic way, different semiotic resources: in this case, the utterance is accompanied by a gesture 
that depicts the feedback-sign provided by the software. As it has been pointed out by many 
researches on the role of gestures in mathematics learning (see for instance Arzarello & al., 2009), a 
strict coordination of the various resources is found in the students’ as well (e.g. see # 2, Fig. 6). 

In summary, in terms of didactical functionalites of the DDA, we can say that our results give 
evidence of the possibility of unfolding of the semiotic potential of the feedback. Besides the 
control effect that such feedback is going to have, the particular modality of use designed in the PP 
implemented in the teaching experiment of the UNISI Team can be related to the achievement of 
the specific educational goal concerning the development of the mathematical meaning of 
equivalence between expressions. 

The ITD pedagogical plan and its results 
The alien PP is underpinned by the Activity Theory perspective. 

The model of the activity highlights three mutual relationships involved in every activity: subject-
object, subject-community, community-object. Each of these relationships is mediated by a third 
entity. The relationship subject-object is mediated by artefacts, that both enable and constrain the 
subject’s action. The relationship subject-community is mediated by rules (explicit or implicit 
norms, conventions regulating social interactions). The relationship community-object is mediated 
by the division of labour (different roles characterizing labour organization).  

The structure of the tasks proposed in this PP can be described by the Activity Theory model in two 
steps: a first activity performed in paper and pencil environment is followed by a second activity 

Figure 8. Two hands 
mimicking the two bars of 
Aplusix feedback-sign.  
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performed in Aplusix. If a contradiction emerges between the task performed in the paper and 
pencil environment and the task performed in Aplusix the activity can evolve (see figure below). 
The structure of the activities is specifically designed to allow possible contradiction emerge. 

The feedback in Aplusix is a crucial element to highlight any contradiction between what is 
produces in paper and pencil environment and what is produced in Aplusix, and consequently it is a 
crucial element to fuel classroom discussion. Any contradiction can be explained and justified 
through a discussion with the teacher and the schoolmates. The achievement of the educational 
goals is expected as outcome of this interaction. 

 

 

 

The type of tasks proposed in the PP are the following: 

Convert a tree representation into a standard representation with paper and pencil and then verify 
the solution in Aplusix.  

Convert a standard representation into a tree representation with paper and pencil and then verify 
the solution in Aplusix  

Complete tree representations in paper and pencil and verify the solution in Aplusix  

 

These tasks were designed to make emerge contradictions between the answers produced by 
students in paper and pencil environment and their answers given through Aplusix. The students 
used feedback to validate their answers and to understand the performed mistake. Discussion had an 
important role because it was orchestrated starting from students’ answers with the aim of reflecting 
about the structure of numerical expression. For example discussion of task 1 and task 2 allowed 
teacher to orient students to reflect about the use of parentheses and the priority of operations. 

The analysis of students’ solutions has highlighted that, opposite to our expectations, the second 
task was easier respect to the first one. The difficulties emerged in the second task mainly depend 
on the poor experience of students in the tree construction. 
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On the contrary, in the students’ solutions of the first task we have found many mistakes that are not 
present in those of the second task. These mistakes depend on the use of parentheses: many students 
wrote the standard representation without using them, even when they were necessary. 

To explain this fact, a first consideration is that when students have to translate a tree representation 
into a standard representation have to choose if insert parentheses or not, while when he has to 
construct a tree starting from a standard expression they have to translate parentheses but not insert 
them in the tree. 

A deeper analysis highlights that to accomplish the second task, students have to know the 
syntactical structure of the tree (how to build a tree) and they have to respect some computational 
rules. Students have to build the tree taking into account that collapsing bottom-up the tree, they 
will find the sequence of computation described by the standard expression. This task strengthens 
procedural skills, or in other words the “superficial structure” of numerical expression. 

Opposite, to accomplish the first task procedural skills are not sufficient. Students have to interpret 
the tree structure. 

Consider the following tree: 

  

 

If a student read the tree in procedural way, he could be wrong in choosing between these three 
expressions: a+b*(c+d) or a+(b*(c+d)) or a+b*c+d. In order to convert the tree in linear form 
parentheses must be inserted in the correct place, it is important to read the tree interpreting its 
systemic structure and this entails the capability to manage the numerical expressions in a structural 
way.  

Task 3 was designed following the Activity theory model too. Students had to complete tree 
representations as shown the figure below.  

This task is quite unusual in the experience with Aplusix. It was an interesting task because to solve 
it students had to focus the attention on structural aspects of an numeric expression. Students had to 
interpret the representations assigned with the task and to compare among them. Through their 
comparison students received hints that oriented them to focus the attention on structural aspect of 
the numerical expression to replace the question mark. In this solution the feedback was crucial. 
During the discussion students were invited to justify why in some cases contradictions are 
emerged.  
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However, opposite to our expectation, a lot of students solved this activity without difficulties. This 
fact may be explained as follows: 

 Aplusix feedback provided students hints that oriented them in replacing the question mark 

 To solve this task students had to focus the attention on structural aspects of a numerical 
expression 

 

In summary, we can say that the modalities of employment of Aplusix and in particular of the 
feedback of Aplusix, designed according to the Activity theory, have been effective to achieve the 
educational goal. In general, results obtained by the comparison between an initial and a final test 
given to students respectively at the beginning and at the end of the experiment, has highlighted that 
students' achievements are consistent with what we envisaged a priori.  

I.6. Summary and contribution to the theoretical landscape 

This summary concerns the modalities of employment of feedback as it has been exploited in the 
three different PPs, according the three different theoretical approaches and the common 
educational goal.  

All the PPs selected the feedback in Training mode, and the modalities of use are expressed in 
different tasks proposed to the students. The different tasks were basically inspired by the common 
hypothesis drawn from Duval’s theoretical approach that suggests, beyond the use of treatment 
tasks, the use of conversion tasks. Nevertheless, the general organization of these tasks differs 
greatly.  

As far as UJF is concerned, the control provided by Aplusix prevents errors and supports adequate 
procedures. Thus, accordingly with Anthropological approach, this use of the feedback is expected 
to foster the development of suitable technique. 

As far as the ITD is concerned, the dialectics between paper and pencil environment and Aplusix 
environment is fed by the control mode that, accordingly with Activity Theory, makes contradiction 
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emerge. The semiotic function of conversion tasks is exploited through the use of Aplusix. When 
the solution of the conversion is checked, the feedback provided by the DDA may highlight an 
inconsistency that requires to be explained.  

As far as UNISI is concerned, the semiotic potential of the feedback is exploited. The tasks were 
designed to exploit the semiotic potential of the feedback signs; tasks explicitly asking the 
interpretation of the feedback signs - appearing step by step when the student operates on the 
expressions - are designed in order to make personal meanings emerge. Then, collective discussions 
are orchestrated by the teacher to make these meanings develop towards the mathematical meaning 
of equivalence. 

What seems interesting is the fact that the different modalities of use of the feedback component 
seem not immediately in contrast, rather they highlight complementarity in respect of different 
possible aims concerning algebraic calculation and, specifically, equivalence. The controlled 
modalities (controlled tree) used by UJF, lead students to develop suitable techniques, that are not 
explicitly addressed for instance in the UNISI PP. The use of the controlled modalities (feedback) 
used to validate students’ solutions used by ITD, leads students to grasp the meaning of equivalence 
between expressions facing contradictions and possibly overcoming them. The meaning of 
equivalence is directly addressed by UNISI PP where the formulation of the equivalence between 
algebraic expressions constitutes one of the basic aims. The link between feedback and equivalence, 
implicitly constructed through the ITD PP is explicitly developed in the UNISI PP through a 
dialectics between individual and 
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the set of potentialities of a specific component of a DDA. 
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II. Alnuset cross-case analysis 

In order to be able to compare design choices made in the two pedagogical scenarios, didactical 
functionalities considered by the two teams and the outcomes of the experiments, the analysis 
reported in this document focuses only on parts of the experiments that have a same educational 
goal, namely the construction of meaning for the notions of equation, identity, truth value of an 
equation, truth set of an equation, equivalent equations. 

II.1. Identification 

The teams involved are ITD-CNR Genova (Italy) and MeTAH Grenoble (France).  

II.2. Contextual elements 

ITD-CNR experimentation  

Local situational context 

The experimentation activity, lasting 1h40, has involved a class of 15-16 year-old students (Grade 
10) attending a Classic Lyceum. The students worked in pairs using Alnuset. Previously, they had 
carried out 6 activities with Alnuset centered on notions concerning algebraic expressions. The 
whole teaching experiment lasted about 20 hours. The activity considered in this cross-case 
experimentation is centered on solving a 2nd degree equation. In the previous school year, students 
had learnt to solve 1st degree equations through symbolic manipulation.  

Relationship between research team, teacher and school 

Some collaborations between the ITD team and the teacher involved in the experimentation were 
developed in the previous years. These collaborations were not continuous along the time and they 
were contextualized inside the standard mathematical curricula. Instead, as far as the present 
experimentation with Alnuset concerns, we asked the teacher to deeply modify the mathematical 
curriculum corresponding to the class involved. As a matter of fact, the mathematical curriculum of 
this class did not foresee solving second degree equations. Moreover, while in the algebra 
curriculum solving second degree equations is faced through the introduction of the well known 
formula, in this experimentation an alternative approach has been adopted. 

As far as how research interventions were perceived by the educational system concerns, we must 
underline that the Liceo Doria, the school involved in the experimentation, is one of the most 
prestigious schools in Genoa. This has influenced in positive way the perception of the Principal 
about the research perspective.  

MeTAH experimentation  

Local situational context 

The French experiment took place in a private senior high school in Grenoble, in a Grade 10 class 
with 34 students (15-16 years old), during two sessions lasting 3 hours altogether, held in a 
computer lab where students worked in pairs on a computer.  

Relationship between research team, teacher and school 
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The teacher of the class where the experiment has been implemented was a former colleague of one 
of the research team members, which facilitated the implementation and the organization of the 
experiment. The design of activities was negotiated with the teacher in order to integrate the 
experiment into the teacher’s planned pedagogical sequence. 

The Table 1 below synthesizes the contextual elements of both experiments: 

 ITD-CNR MeTAH 

Kind of school Classic Lyceum Private high school 

School level Grade 10 (15-16 years old) 

Number of students 24 34 

Number of hours 20h (whole experiment) 

1h40 reported activities 

3h (whole experiment) 

1h30 reported activities 

Classroom organization Computer lab with 2 students per computer 

Relationship between 
research team, teacher 
and school 

The teacher has collaborated with ITD 
team in previous years but not in 
continuous way along the time  

The teacher was a former 
colleague of one member of the 
research team 

Integration of the 
experiment 

The experimentation with Alnuset 
required teacher to deeply modify the 
mathematical curriculum corresponding 
to the class involved. The 
experimentation activities negotiated 
with the teacher. 

Experimental activities 
negotiated with the teacher in 
order to integrate the experiment 
into her planned teaching 
sequence 

Table 1. Contextual elements of experimentations with Alnuset. 

II.3. Theoretical frames  

In this cross-case analysis the two teams share the same epistemological analysis related to the 
mathematical knowledge to be learned and to difficulties emerging in its leaning. Instead, different 
theoretical frameworks guided the two teams in the analysis of the whole process of mathematics 
teaching and learning, and of the mediation provided by the tool used in the didactical practice. The 
mathematical knowledge involved in their experimentations concerns the notion of algebraic 
equality. We present the main theoretical commonalities and differences that characterize the 
research of the two teams in the development of this notion in school practice. In doing this, we will 
try to show how the theoretical background of the two teams affects both the design of the 
didactical scenario centred on the use of Alnuset and the analysis of the teaching and learning 
processes related to its implementation in the school context. 

Epistemological analysis of the knowledge involved in the two experiments 

The two teams share the assumption that important conceptual developments are needed to pass 
from numerical expressions and arithmetic propositions to literal expressions and elementary 
algebra propositions. As a matter of fact, in arithmetic only numbers and symbols of operations are 
used and the control of what expressions and propositions denote can be realized through some 
simple computations. In elementary algebra, instead, letters are used to denote numbers in 
indeterminate way and new conceptualisations are necessary to maintain an operative, semantic and 
structural control on what expressions and propositions denote (Drouhard 1995; Arzarello et al. 
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2002). The necessity of this conceptual development emerges clearly with the construction of the 
notion of algebraic equality. On the morphological plan, equality is a writing composed by two 
expressions or by an expression and a number connected by the “=” sign. On the semantic plan, 
equality denotes a truth value (true/false) related to the statement of a comparison. When the 
expression(s) composing the equality is (are) strictly numerical, it is easy verifying its truth value 
through some simple calculations (e.g., 2*3+2=8 is true while 2*3+2=9 is false). Experiences with 
numerical equality contribute to structure a sense of computational result for the “=” sign. This 
sense can be an obstacle in the conceptualisation of algebraic equality as relation between two 
terms, as highlighted by several researches (Kieran 1989, Filloy et al. 2000). When the 
expression(s) composing the equality is (are) literal the equality can present different senses 
because the value assumed by the letter can condition differently its truth value. In these cases the 
“=” sign should suggest to verify numerical conditions of the variable for which its two terms are 
equal. There are cases where the two terms could never be equal whatever the value of the letter is, 
as in 2(x+3)=4x-2(x-1). In other cases to interpret equality on the semantic plane, it is necessary to 
distinguish if it has to be considered as equation or as identity. The “=” sign assigns to the equality 
the sense of equation when its two members are equal only for specific values of the letter. For 
example, the equality 2x-5=x-1 is true only for x=4 and it is false for all other values. Instead, the 
“=” sign gives to the equality the sense of identity when its two members are equal whatever the 
numerical value of the letter is, as in 2x+1=x+(x+1). In order to master algebraic equality, a 
conceptual development of notions of equation, identity, truth value, truth set and equivalent 
equation is necessary. Moreover, to express the way in which a letter can condition the truth value 
of an equality, it is necessary to develop a capability to use universal and existential quantifiers, 
even though in implicit way. 

Traditionally, conceptual construction of algebraic equality is pursued through solving equations 
using techniques of symbolic manipulation. Empirical evidence and results of research have 
highlighted that in many cases this approach does not favour a construction of an appropriate sense 
either for the notion of algebraic equality or for that of solution of equation. In more recent years, a 
functional approach to algebra has been introduced within the didactical practice allowing to 
articulate algebraic and graphical registers of representations. Even in this approach difficulties 
emerge.  

The two teams share the hypothesis that the operative and representative opportunities of Alnuset 
can be effectively used to mediate the conceptual development necessary to master the notion of 
algebraic equality. Moreover, the two teams share that the operative and representative 
opportunities offered by this tool can emerge only within specific didactical practices. The two 
teams use different theoretical approach to design didactical scenarios to be implemented in 
classroom and to interpret the mediation offered by the tool used.  

 

Theoretical frameworks at the basis of the Italian teaching experiment 

The Italian team uses the theoretical framework of the Activity Theory (AT) to design didactical 
scenarios and to analyze teaching/learning processes that take place in school context. 
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In the framework of the AT, every teaching/learning activity can be seen as an activity oriented 
towards a scholastic object (solution of a task, class discussion on a specific issue...) involving 
students, teacher and artifact to produce an outcome, namely the students’ acquisition of a specific 
knowledge or ability (didactical goals). A specific model elaborated by Cole and Engeström (1991) 
in the framework of AT (cf. Figure 1) is particularly appropriate to study the relationships that take 
place in this type of activity. 

This model highlights three mutual relationships involved in every activity, namely the 
relationships between subject and object, between subject and community, and between community 
and object. Each of these relationships is mediated by a third entity. The relationship between 
subject and object is mediated by artefacts that both enable and constrain the subject’s action. The 
relationship between subject and community is mediated by rules (explicit or implicit norms, 
conventions and social interactions), while that between community and object is mediated by the 
division of labour (different roles characterizing labour organization). 

The artefacts used in the activity mediate not only the relationship between the subject and the 
object but also that between the subject and the community and that between the community and the 
object.  

 

Figure 1. Cole and Engeström' model of activity. 

We have used this theoretical framework both to model the design of didactical scenarios mediated 
by Alnuset to pursue the didactical goals concerning the algebraic equality and to analyze the 
teaching and learning activity that took place during its experimentation in the class.  

According to the Cole’s and Engeström’s model, in the algebraic activity the relationships between 
subject and community is mediated by algebraic rules that allow participants to define what can be 
considered as acceptable practice in that domain. Apart from the role of mediating element, in an 
educational perspective rules can be a didactical goal too. The transformation of the algebraic rule 
from being an individual-community mediator to an object of learning can take place only through 
a network of activities where shift of focus and breakdown occur. 
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Coherently with the AT framework, the ITD-CNR scenario has been designed in order to provoke 
contradictions and breakdowns in the activity and to promote a shift of focus related to the algebraic 
rule with the aim to determine a deep change and transformation in the object of the activity.  

Having this aim in mind, specific tasks have been designed taking into account the following two 
didactical strategies: 

a) comparing student’s task solution obtained with pen and paper with the solution based on 
the use of Alnuset, 

b) comparing students’ task solutions and their interpretations of the representative phenomena 
occurred with Alnuset.  

The use of Alnuset according to these two pedagogical strategies can have an important role to 
favour the transformation of the algebraic rule from being an individual-community mediator to an 
object of learning.  

For example, specific tasks have been designed to exploit Alnuset for provoking a breakdown 
related to the use of specific rules between what a student has anticipated and what he has actually 
accomplished with the system; other task have been designed for provoking contradictions among 
the participants’ interpretations of the representative phenomena mediated by the system connected 
to specific algebraic rule. As a consequence of these contradictions and breakdowns a shift of focus 
in the purpose of an action connected to the algebraic rule can emerge in the activity. When a 
breakdown and a shift of focus related to an algebraic rule occurs, a rule ceases to be a semiotic 
element that automatically mediate the individual action and his relationship with the community, 
and becomes the object of her/his target action. 

The breakdowns and shift of focus that emerge in the transformation of the algebraic rule from 
being an individual-community mediator to an object of learning are mainly of semiotic nature. 
ITD team uses the Peirce’s semiotic to explain how the operative and representative opportunities 
of Alnuset can favour the semiosis processes that characterize the described transformation.  

Peirce describes a sign as a triad: a material sign which denotes an object of thought and an 
interpretant (which is another material representation of the relation between first material sign and 
the object). Moreover, Peirce distinguishes among three kinds of signs, namely indices, icons and 
symbols, according to the relationship that a sign establishes with its referential object. In the 
Peirce’s framework the notion of rule (or general law or convention) is strictly linked to the notion 
of symbol: "a Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually 
an association of general ideas, which operate to cause the Symbol to be interpreted as referring to 
that Object" (Peirce, 2003 - CP 2.249). Peirce states that behind a rule or a convention of a sign 
there are always indexical and iconic links with the referential object and with its properties that can 
emerge through its interpretants. An icon is a sign that denotes its object by virtue of a quality that it 
shares with its objects; an index as a sign that denotes its object by virtue of an existential and 
physical connection that it has with its object.  
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ITD team thinks it is possible to exploit the operative and representative opportunities of Alnuset to 
arise breakdowns and shift of focus in the teaching and learning activity with the aim to allow 
students to grasp the indexical and iconic relationships behind the rules of algebraic symbols.  

Let us consider, as examples, some operative and representative characteristics of Alnuset. We note 
that in Alnuset: 

1. A variable is a mobile point on the line and an expression is a point on the line which 
depends on the value assumed by the variable. These points highlight an indexical 
relationship with their referential objects (numbers on the line) through the drag of the 
variable point. 

The presence of two expressions in a post-it associated to a point on the line may mean: 

 A conditioned equality, if taking place at least for one value of the variable during its drag 
along the line.  

 A relationship of equivalence, if taking place for all values assumed by the variable when it 
is dragged along the line. 

 A relationship of equivalence with restrictions, if taking place for every value of the variable 
when it is dragged along the line, but for one or more values, for which one of the two 
expressions disappears from the post-it and from the line. 

The way expressions are represented on the Algebraic Line of Alnuset can mediate the development 
of the control over the conditions that determine the equality between two expressions or their 
equivalence.  

2. A proposition within the Algebraic Line environment of Alnuset has an indexical 
relationship with its truth value that emerges through the drag of the variable on the line. 
As a matter of fact, the truth value of the proposition determines the colour of a marker 
associated to the proposition (green means true, red means false) during the drag of the 
variable on the line. The numerical set represented in a formal set notation in a window of 
the Algebraic Line has an indexical relationship with its referential object (numerical 
elements of that set) that emerges through the drag of the variable on the line. In fact, 
belonging or not of a numerical value of a variable on the line to the formal set notation 
determines the colour of a marker associated to it (green means belonging, red means not 
belonging) during the drag of the variable.  

We note that the accordance between the colour of the proposition-marker and the colour of the set-
marker is a representative event that can be exploited to validate the constructed set as a truth set of 
the proposition.  

The way propositions and numerical sets are represented can mediate: 

 the development of a control over the conditions that determine the truth of an equality or 
the equivalence between two equalities; 
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 the construction of ideas for the hidden universal and existential quantifiers required to 
master the truth set of a proposition.  

3. The way expressions and propositions are manipulated in the Algebraic Manipulator of 
Alnuset can mediate: 

 the development of an operative control of the way how to use the rules of algebraic 
transformation. In the Algebraic Manipulator environment after a selection of a part of 
expression or proposition by the user, the system activate all the transformation rules of the 
interface that can be applied on the selection performed. The application of one of the these 
rules determine the re-writing of the expression or proposition according to the 
transformation applied. This features of the Algebraic Manipulator of Alnuset support the 
recognition of the iconic relationship, namely the recognition of a structural similarity of 
form, between rule of algebraic transformations and algebraic forms on which they can be 
applied. This is at the basis of the capability to symbolically manipulate algebraic 
expressions and propositions.  

 the development of semantic control as to what is preserved through their transformation. 
The result of the transformation can be automatically represented in the Algebraic Line 
environment and the representative events emerging in this environment can be effectively 
exploited as indices of the preservation of the numerical equivalence through the 
transformation.  

 the development of a theoretical control of the way how to justify a new algebraic rule of 
transformation In this Manipulator the available rules are open-ended, in the sense that a 
new rule can be automatically created once it has been demonstrated. The new created rule 
can been considered as establishing an indexical relationship with its referential object, 
namely a theorem. 

MeTAH experimentation 

Based on a preliminary analysis of Alnuset from utility, usability and acceptability points of view 
(Tricot et al. 2003), which brought to light main functionalities supposed to enhance learning of 
functions, equations and inequations, notions at the core of the Grade 10 math curriculum, MeTAH 
team decided to conceive a pedagogical scenario addressing these notions in Alnuset environment. 
In this report, we focus only on the notion of equation dealt with in both Italian and French 
experiments.  

Three main theoretical frameworks have been chosen to underpin the design, implementation and 
analysis of the French experiment: semiotic registers of representation approach (Duval 1993, 
1995), anthropological theory of didactics (Chevallard 1999) and instrumental approach (Rabardel 
1995). Moreover, epistemological and cognitive considerations related to the mathematical notions 
at stake have also been taken into account. These considerations are shared with the ITD-CNR team 
and are presented above (cf. p. 2). In what follows, we explicit the way these theoretical 
frameworks and considerations were used and what choices they underpin.  

Semiotic registers of representations 
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This approach was used at a very general level to analyze mathematical objects, their 
representations and manipulations available in Alnuset. Referring to this approach was motivated 
by the fact that mathematical objects are only accessible by means of their representations. 
According to Duval (1993), in order to be able to distinguish between an object and its 
representation, there is a necessity to have at one’s disposal at least two different representations of 
the given object. The coordination of at least two registers of representation is also necessary to 
understand conceptual aspects that characterize the object. This coordination manifests itself by a 
capability to recognize if two different representations are representations of the same object. 
According to Duval (1995), semiotic registers of representation enable three kinds of cognitive 
activities: (1) formation of representations complying with the rules of formation of signs proper to 

the register (ex. 2x²-1 complies with the rules of formation within the algebraic register, 5+ does 
not); (2) treatment of a representation within a given register respecting transformation rules proper 
to the register (ex. in algebraic register, the rule k(a+b)=ka+kb can be used to transform 3(x²+1) in 
3x²+3); (3) conversion of a representation in one register into another register (ex. the expression 
3(x²+1) in algebraic register is converted into “a product of 3 by a sum of a square of x and 1” in 
natural language register). 

Let us look now at Alnuset through the lens of the semiotic registers of representation approach. 
Alnuset offers three different registers of representation of algebraic expressions:  

 algebraic symbolic register in Algebraic Line and Algebraic Manipulator components. This 
is the usual register where representations of algebraic expressions consist of numbers, 
letters, operation symbols, relation symbols…  

 dynamic graphical register in Algebraic Line component. This is a new register specific to 
Alnuset, in which algebraic expressions are represented by points on a number line whose 
position depends on actual values of their variables, which are also represented as mobile 
points on the line. Dragging the variable points along the line makes their values change and 
consequently the points corresponding to the expressions involving these variables move on 
the line accordingly.  

 graphical register in Cartesian Plane component in which an algebraic expression is 
represented by a curve in a 2-dimensional coordinate system. 

These three registers are interrelated. For example, an algebraic expression defined in algebraic 
register is automatically represented as a point on the number line (coordination between algebraic 
and dynamic graphical registers), or there is a possibility, on the user’s demand, to show a curve 
representing an expression while keeping visible the number line with the variable point and the 
algebraic representation of the expression (coordination of all three registers).  

Looking for possible activities in Alnuset from the point of view of Duval’s approach, it turned out 
that : 

 A formation activity is only possible in algebraic register: a user can enter an algebraic 
expression either in Algebraic Line component, it is then automatically represented by a 
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variable point on the number line, or in Algebraic Manipulator component, it is then 
represented in the usual algebraic representation. 

 A treatment activity is only partially possible in algebraic register within Algebraic 
Manipulator component: the user selects a sub-expression of a given expression and chooses 
a transformation rule from a list of applicable rules to be applied on the selected sub-
expression. The system applies the rule and provides the transformed expression.  

 No direct conversion activity for the user is possible with Alnuset. Conversions are 
performed by the system automatically or on demand. For example in the Algebraic Line 
component, a variable is converted automatically in a mobile point on the line, an expression 
is automatically converted in a point on the line whose position depends on its structure and 
on the value of its variables assumed on the line. The system converts algebraic 
representations into graphical ones on demand. Moreover the system automatically converts 
numerical sets defined through a graphical model on the line into formal set notation.  

Semiotic registers of representation approach appeared as not very fruitful for the design of 
experimental activities since, as we mentioned above, Alnuset performs conversions between 
registers either automatically or on demand, therefore no conversion activity can be done by the 
user. As far as treatment activity is concerned, it is only possible in Algebraic Manipulator 
component, which we deliberately left aside for the experiment having in mind a very short time 
allotted to it. However, we saw a potential of Alnuset in establishing links between registers, and 
mainly the links between algebraic and graphical registers mediated by the dynamic graphical 
register.  

Functional approach to equations and inequations allowing the articulation between algebraic and 
graphical registers is at the core of the Grade 10 mathematics curriculum. Anthropological theory of 
didactics was thus adopted to analyze mathematical organizations related to the notion of equation 
both in math curriculum and in Alnuset. 

Anthropological theory of didactics 

Within the anthropological theory of didactics, a praxeological analysis (Chevallard 1992) of the 
notion of equation in two distinct institutions, “Grade 10 textbook” and “Alnuset”, allowed 
identifying types of tasks viable in both institutions and comparing techniques available in these 
institutions (cf. table 2). This analysis shows that while “Grade 10 textbook” techniques are based 
on algebraic transformations of algebraic expressions, Alnuset instrumented techniques rely on 
visual observations of expressions (their position on the algebraic line, colour feedback…), and 
(almost) no algebraic treatment is needed when applying these techniques (Krotoff 2008). Thus, 
Alnuset was considered as an appropriate tool to help students develop conceptual understanding of 
the notion of equation, without adding difficulties linked to algebraic treatment that many students 
do not master well enough. Consequently, types of tasks viable in both institutions were designed in 
a way to be solved with Alnuset. 
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Type of task “Grade 10 textbook” technique “Alnuset” technique3 

T1: Determine if 
two expressions 
are equivalent 

Τ11: by successive algebraic 
transformations of one expression 
check the possibility to obtain the 
other expression 
Τ12: by successive algebraic 
transformations applied on both 
expressions check the possibility 
to obtain identical expressions 
Τ13: check if graphs of the 
expressions coincide  

Τ'11: enter the two expressions in 
Algebraic line environment and check 
whether the corresponding points 
coincide when x moves on the line 
 
 
 
 
Τ’13: show graphs of expressions in 
Cart. Plane and observe if they overlap 

T2: Solve an 
equation of the 
type f(x) = 0 

Τ21: solve algebraically the 
equation (i.e. by means of 
algebraic transformations)  
 
 
 
 
 
Τ23: solutions are abscissas of 
intersection points between the 
curve representing f and the x-
axis 

Τ'21: in Algebraic line environment, use 
E=0 command 
 
Τ'22: in Algebraic line environment, drag 
x in a way to make f(x) coincide with 0, 
read the corresponding value(s) of x 
(usable only when the solutions are 
integer) 
Τ’23: in Cartesian Plane show the curve 
of f, drag x to make the mobile point on 
the curve coincide with the point(s) of 
intersection between the curve and the 
x-axis, read the value(s) of x 

T3: Solve an 
equation of the 
type f(x) = g(x)  
(g can be a 
constant)  

Τ31: solve algebraically the equation 
(i.e. by means of algebraic 
transformations) 
 
 
 
 
Τ33: utiliser la courbe représentative 
de f et de g et lire les abscisses de 
leurs points d’intersection  

Τ’31: in Algebraic Line enter the 
expression f(x)-g(x) using algebraic 
transformations, then use Τ’21 with 
E=f(x)-g(x) 
Τ’32: in Algebraic line environment, drag 
x and search for values of x for which 
f(x) and g(x) coincide 
Τ’33: in Cartesian Plane, show curves of 
f and g, drag x to make the mobile point 
coincide with the point(s) of intersection 
between the two curves, read the 
value(s) of x 

Table 2. Praxeological analysis of the notion of equation in two institutions. 

The instrumental approach (Rabardel 1995) was used in the analysis of students’ activity wit 
Alnuset. We were focusing on the way the students get familiarized with the available 
functionalities of the tool, how they use them to solve the given tasks, how they develop the 
instrumented techniques and how they connect them with the mathematical knowledge at stake. In 
this way, we wished to identify to what extent Alnuset and the instrumented techniques help the 
students conceptualize the mathematical notions aimed at by the activities. 

II.4. Comparison of didactical functionalities 

As was mentioned in the section III, both teams share the epistemological considerations related to 
the notion of algebraic equality, which led them to set up very similar educational goals. As a 
matter of fact, ITD-CNR team aimed at investigating the way Alnuset can mediate the notions of 
conditioned equality, solution of an equation, equivalent equations, truth value of an equality and 
truth set of an equation, and MeTAH team aimed at helping students construct meaning of the 

                                                 
3 We only analyze techniques available in Algebraic Line and Cartesian Plane component. Techniques based on 
algebraic transformations of expressions are also available in Alnuset, namely in Algebraic Manipulator component, 
which was not used in the experiment. 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX II 

27 

notion of equation as a statement that is true for some values of the letter involved and of a solution 
of an equation as a value of the letter for which the equality is true. The two teams made use of the 
same characteristics and features of the tool, in particular the drag of variable points on the 
algebraic line, post-its associated to them and the E=0 command. However, they differed in ways 
the tool was used to achieve the educational goals. These differences in the modalities of 
employment of Alnuset seem to result from different theoretical frameworks used to design 
experimental activities.  

ITD-CNR team drew on the activity theory framework to design experimental activities. As was 
mentioned in the section III, coherently with this AT framework, the activities have been designed 
in order to provoke contradictions and breakdowns in the activity and in this way to promote a shift 
of focus related to the algebraic rule with the aim of favouring the development of a control on 
algebraic equality at a symbolic level. Specific tasks have been designed taking into account two 
different didactical strategies: comparing students’ solutions obtained with pen and paper with the 
solutions based on the use of Alnuset, and comparing students’ solutions and their interpretations of 
the representative phenomena occurred with Alnuset. 

MeTAH team chose anthropological theory of didactics to frame the design of experimental tasks. 
A praxeological analysis of the notion of equation was performed in terms of types of tasks and 
techniques present in two institutions: “Grade 10 textbook” and “Alnuset”. Moreover, bound by 
institutional constraints (the teacher of the experimental class required the tasks being close to the 
traditional ones so that they would easily integrate into her usual pedagogical sequence, which was 
in deep contrast with the ITD-CNR experimental conditions), we only looked at the types of tasks 
viable in both institutions. Significant differences were observed at the level of techniques 
associated to these tasks in the two institutions, which led us to question possible contribution of the 
instrumented techniques in Alnuset to the conceptualization of the notions at stake and to the 
development of traditional “Grade 10 textbook” techniques. 

The following table presents the main aspects of the cross-case analysis of didactical functionalities 
considered by ITD and MeTAH teams regarding their experimentations with Alnuset.  

 

 

 

 

 ITD-CNR MeTAH 

Educational 
goals 

Mediating the notions of conditioned 
equality, solution of an equation, 
equivalent equations, truth value of an 
equality and truth set of an equation 

Help students construct meaning of the 
notions of equation as a statement that is 
true for some values of the letter involved, 
and of a solution of an equation as a value 
of the letter for which the equality is true. 

Characteristics 
and features of 
Alnuset 

Algebraic Line: Drag of the variable 
point, Post-it function, E=0 command, 
Coloured marker associated to 
proposition and numerical sets

Algebraic Line: Drag of the variable point, 
Tracking functionality, Post-it function, E=0 
command 
Cartesian Plane: Showing graph of an 
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Algebraic Manipulator: transformation 
of propositions by means of the 
available rules, possibility to send the 
transformed form of an expression or 
of a proposition to Algebraic Line 

expression 

Modalities of 
use 

Tasks designed according to the AT 
and taking into account the two 
didactical strategies described in 
section III. 
 

- Students working 2 per computer 
- Alternation of pairs work and whole class 
discussions 

- Traditional school algebra tasks designed 
to be solved by using Alnuset 
instrumented techniques 

Table 3. Didactical functionalities of Alnuset considered by the two teams. 

II.5. Results of the cross-case analysis together with illustrative 
examples 

The two teams have used different frames to analyze the outcomes of their respective experiments. 
ITD-CNR team used Peirce’s semiotic approach to highlight the way Alnuset mediates the 
relationships of the signs used in algebra with their referential objects, while MeTAH focused on 
the instrumented techniques developed by the students in interaction with Alnuset and on the 
discourse about these techniques in order to analyze whether and to what extent they contribute to 
conceptual development of mathematical notions at stake and how they can be related to the 
traditional school techniques. 

Italian experimentation  

Let us remind that the Italian team was involved in the design and implementation of Alnuset. For 
this reason the ITD team’s research goal was to verify if the use of Alnuset in educational activities 
can support the conceptual development of some algebraic notions (such as the notions of equation 
as conditioned equality, of solution of an equation, of equivalent equations, of truth value of an 
equality and of truth set of an equation). 

In this report we will focus on some examples to illustrate how Alnuset was used to developed a 
conceptual understanding of the “=” sign in algebraic domain (that is to say as sign between 
algebraic expressions) in order to conceptualize, in particular, the notion of equation as equality 
conditioned by some values of the variable.  

To master these notions in the algebraic activity, it is necessary to use signs such as letters, 
operational signs, numbers which are used to compose others signs such as algebraic variables, 
expressions and propositions. Moreover, to master these signs on the operative level, it is necessary 
to recognize the relationships of these signs with their referential objects (numbers, sets of numbers, 
truth values), namely it is necessary to develop the capability to practice a semantic control over 
them. To explain how Alnuset can mediate these relationships (between variables, expressions, and 
propositions and their referential objects), we referred to some elements of the Peirce’s semiotic 
frame (Peirce, 2003).  

Our experiment activity is composed by several tasks. The first task aims at allowing students to 
explicit their own conception of the algebraic equality notion.  
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Task: Consider the following two polynomials: x2+2; 2x+3. Explain what it means putting the equal 
sign between them, or, in other words, how you interpret the following writing x2+2=2x+3. 

Many students attribute to the “=” sign the meaning of computation result, despite they were 
already faced with 1st degree equations. A typical students’ answer is: “To put the equal sign 
between two polynomial expressions means that these expressions have the same result”. For many 
students inserting the equal sign between two expressions suggests the idea that the computation 
result of the two terms has to be equal when a value is assigned to the letter. In other words, the 
equivalence is verified through a numerical substitution. 

In the following task students were asked to represent the two expressions on the algebraic line of 
Alnuset to verify their answers “Insert the polynomials x2+2; 2x+3 in the algebraic line of Alnuset 
and verify your hypothesis”. Accordingly to the idea that tasks must provoke contradictions and 
breakdowns in the activity thus promoting a shift of focus 
related to the meaning of the equal sign in algebra domain 
(with the aim to favour the development of a control on 
algebraic equality at a symbolic level), students are asked to 
compare their tasks solutions obtained with pen and paper with 
that based on the use of Alnuset.  

Dragging the mobile point x along the line, and observing that the points corresponding to the two 
expressions x2+2 and 2x+3 move accordingly, all students observed that there are only two values 
of x for which the points corresponding to the two expressions are close to each other, almost 
coincident. All students used the “start tracking” function which allowed them to visualize at the 
same time on the screen the two expressions which are far from each other when the value of x 
moves along the line. We can observe that in the algebraic line of Alnuset, the indexical relationship 
between the points corresponding to the expressions x2+2; 2x+3 and their objects of reference (the 
numerical values assumed by the two expressions for the different values assumed by the variable x 
involved) was made explicit. This dynamic indexical relationship allowed students to grasp the 
meaning of functional dependence of an expression to a variable. Thus, through this exploration, 
students experienced that equality of these two expressions is conditioned by numerical values of 
the variable, which is crucial to develop the conditioned equality notion. In previous activities with 
Alnuset, students experienced that every point of the algebraic line is associated to a post-it that 
contains all expressions constructed by the user denoting that point. In order to verify equality of 
two expressions, the students tried to find values of x for which the two expressions belong to the 
same post-it. We observe that the post-it can be interpreted as an index in the Peirce’s sense. As a 
matter of fact, the post-it indicates that the expressions contained in it are equivalent for the value of 
the variable form that they depend on. Thus, for this value of x, the two expressions correspond to 
the same point and they indicate the same numerical value. In this way, the pos-it of Alnuset 
mediated the equivalent expressions meaning.  

Since these values had to be constructed on the line because they were irrational (in full range 
domain, only integer numbers are points represented on the line by default), the students could not 
verify this directly: “we don’t understand what is the number…it will be 2 point something…even if 
we use zoom in we don’t understand …”. The technique mediated by Alnuset to find these irrational 
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numbers requires transforming the equation into its canonical form (x2-2x-1=0), representing its 
associated polynomial on the line and using a specific command to find roots of this polynomial. 
Our hypothesis was that this technique could favor a conceptual development of notions of 
equivalent equations and of truth value/truth set of an equation. The transformation was realized in 
the Symbolic Manipulator. In order to transform the equation x2+2 = 2x+3 in its canonical form, 

students had to apply the rule A=B  A-B=0 to the equation. The selection of the equation allowed 

students to identify the algebraic structure which they had recognize in that of the rule A=B  A-
B=0. We can observe that the choice of a rule among those available in the interface is possible by 
recognizing iconic links between the algebraic structure of the rule and that of the part of expression 
or proposition selected (in our case, students have selected the whole equation).  

In order to explore quantitative relations linking the two expressions x2+2 and 2x+3 to the 
expressions x2-2x-1 and 0, students had to understand that the values of x for which x2+2 was equal 
to 2x+3 were the same for which x2-2x-1 was equal to 0. The didactical strategy used was to ask 
students to formulate an hypothesis of solution and then to validate it through the use of Alnuset. 
Contradictions could occur and, in that case, Alnuset could be used to explore and describe the 
correct relationship between x2+2 and 2x+3 and x2-2x-1 and 0. 

Task: Make a hypothesis about the relationship among the three polynomials x2+2; 2x+3; x2-2x-1 
imagining what you could observe if you represented them on the algebraic line and if you dragged 
x. Use algebraic line to verify your hypothesis. 

A posteriori, we realized that the formulation of this task was misleading since it oriented the 
students to search for a relation among the three polynomials rather than between couples of terms 
of the two equations. Some students dragged the variable to explore if there were values of x for 
which the three polynomials could denote the same value on the line. They verified that such a 
value does not exist. Even if this exploration was not expected, it proved an important reference to 
overcome the following misconception, quite common in the students, concerning the equivalence 
of equations: two equations are equivalent if all their terms are equal for some values of the 
variable. A new formulation of the task by the experimenters allowed students to focus on couples 
of terms of the two equations. Exploiting the drag of the variable x they experienced that, the values 
of x for which the points corresponding to the expressions x2+2 and 2x+3 are closer each other, are 
the same for which the point corresponding to the expression x2-2x-1 is close to the point 0. Once 
again, the points corresponding to the expressions can be interpreted as indexical signs linking, in 
dynamic way, the expressions with the values that they assume dragging the variable from which 
they depends on. These indexical signs and their dynamic use, allowed students to assign meaning 
to the exploration on the Algebraic Line component. In others worlds, students understood that, in 
order to find values of x for which x2+2 is equal to 2x+3, it is sufficient to find values of x for 
which x2-2x-1 is equal to 0. Thus, they can begin to grasp the meaning of equivalent equations 
notion. Since these values are irrational, students had to construct them on the algebraic line. For 
this reason, students used the command E=0 to find the irrational roots of the polynomial x2-2x-1 
and to automatically represent them on the line. The technique to use the function E=0 supports the 
construction of the meaning for the notion of roots of a polynomial. As a matter of fact, the student 
has to drag x to approximate the polynomial to 0. When this is done, the system automatically 
produces the exact value of the root. The process of calculation of the polynomial root is 
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graphically represented by a triangle which changes progressively its color from red to green. The 
triangle is an index, in the Peirce’s sense, of the polynomial root. 

Through these tasks the idea of equivalent equations (equations having the same truth set) can begin 
to emerge. As a matter of fact, the post-it allowed students do verify that, the points corresponding 
to the expressions x2-2x-1 and 0 overlap (that is they refer to the same point) and, for the same 
values of x, the points corresponding to the expressions x2+2 and 2x+3 overlap. This idea will be 
consolidated through the exploitation of a new dynamic feedback offered by the system. We note 
that in the algebraic line environment expressions are represented on the line while equalities are 
represented in a specific window named “sets” and they are associated to a marker (a little dot) 
whose color is managed automatically by the system. The marker is green if, for the current value 
of the variable on the line, the equality is true and, conversely, it is red if the equality is false. The 
color of the marker is an index in the Peirce’s sense. The green color indices that for the current 
value of x the equation is true, instead, the red color of the marker indices that the equation is false. 
The analysis of the results of the experimentation shows that some students have grasped the 
meaning of equivalent equation observing the accordance of color between the marker associated to 
the equation x2-2x-1 = 0 and that associated to the equation x2+2= 2x+3, as shown in the following 
dialogue. 

Student 1: When x is 21  the two expressions are equal and these [dots] are green. So, since the 

solution of this equation is 21  then also for the other equation is the same.  

Student 2: and for the other value [ 21 ] it is true the same  

Student 1: yes, for these values the two equations are true 

 

Others students, instead, have grasped this notion observing that, for the same value of x, the 
expressions x2-2x-1 and 0 belong to the same post it and the expressions x2+2 and 2x+3 belong to 
the same post-it.  

Student: If I drag x on 21  and on 21 , the expressions of the first equation belong to the 

same post-it, namely x2-2x-1 and 0 are coincident for these values of x. For the same values of x 
even x2+2 and 2x+3 belong to a same post-it. 
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In both cases we can observe that the indexical link between the sign (color of marker or post-it) 
and its respective object of reference (truth value of the equation, equivalence between expressions) 
has helped students to build the meaning of equivalent equation notion. 

French experimentation 

In what follows, we provide examples of tasks designed in a way to make the students’ strategies 
evolve from possibly using Alnuset only to verify solutions found algebraically to those based on 
instrumented exploratory techniques. A few results of the experimentation are provided illustrating 
how Alnuset was used to develop a conceptual understanding of the “=” sign and some instrumental 
issues are discussed.  

The first task involving equations consisted in finding solutions of f(x)=4, with f(x)=x², after having 
studied the function f with Alnuset. The task was intentionally quite simple: the students could 
either solve the equation algebraically and verify the result with Alnuset, or solve the equation with 
the tool by dragging x along the algebraic line and looking for values for which x² coincides with 4. 
Both strategies appeared to almost the same extent. However, students who used the exploration 
strategy to find solutions with Alnuset succeeded better than those who used the tool just to verify 
the results found by solving the equation algebraically, since these often provided only one, 
positive, solution. This example shows two different schemes of use of Alnuset emerging in the 
activity, thus transforming the artefact either to an instrument whose main function is to validate a 
conjecture, or to an instrument that can be used to explore a given situation and raise conjectures. 

The task asking to solve the equation x²=3x+4 was proposed next to prompt students to use Alnuset 
technique of dragging x on the line and searching for values for which the equality is true. Indeed, 
the students did not know yet algebraic techniques for solving such 2nd degree equation. Using the 
Alnuset technique requires to make sense of the “=” sign as meaning that the two expressions have 
the same value for some value of x, and thus also to distinguish between a letter standing for a 
variable and for an unknown. The students were first asked to determine whether 1, –1 and 2 are 
solutions of the equation. This question was intended to reveal students’ conceptions of the notion 
of solution of an equation. Almost all students succeeded the activity. However, the following 
dialogue between two students reveals the student’s S1 conception of a solution linked to the 
arithmetic sense of the “=” sign: 

S1:  You have to find 1. No, 3x+4 must be equal to 1, the solution. 

S2:  No, you have to put x on 1 and the… what do you call it [pointing at 3x+4]… Because x² 
should be equal to… the thing, equation and this isn’t the case (Figure 2a). 

S1:  But it’s the result this [pointing at 1]. 

Indeed, it seems that S1 considers a solution of an equation to be the “result” or the value of the 
expressions: if 1 is a solution of x²=3x+4, then (x²=) 3x+4=1. This conception emerged also when 
the students checked for -1. The student S2 grasped the targeted technique: “On the other hand, -1 
is the solution since f(-1) equals this equals this equals this” (Figure 2b), and explains it to S1: “To 
find the solutions, you drag x until x² and 3x+4 overlap”.  
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(a)     (b)  

Figure 2. (a) 1 is not a solution since x² and 3x+4 do not overlap when x is on 1; (b) –1 is the 
solution. 

The students were then asked to find other solutions of the equation if there are any. This task was 
much more difficult for the students. Only half of the pairs succeeded it. The main obstacle was the 
fact that when x=4 (the other solution), the expressions x² and 3x+4 went out of the screen. The 
students did not spontaneously resort to using “tracking” functionality allowing to keep visualising 
the expressions taking bigger values, which the students had used previously. Teacher’s 
intervention was necessary to remind the availability of this functionality, which helped the students 
to successfully finish the task. Such observations point to the issue of instrumental genesis in 
students, which can be a rather long-term process, especially in the case of innovative 
functionalities such as “tracking”. During the whole class discussion, many students mentioned 
having used post-its and the “overlapping” strategy in Alnuset combined with verifying 
algebraically whether the two expressions x² and 3x+4 have a same value when x is assigned a 
value found as a solution of the equation with Alnuset. This evidences about the articulation 
between the instrumented Alnuset and the traditional school techniques. Moreover, the teacher had 
often taken opportunity during the whole class discussions to address the issues of available 
functionalities and the ways of using them to solve the given tasks, which appeared crucial to 
students’ progress both in solving mathematical tasks and mastering the tool.  

II.6. Potential offered for the theoretical landscape 

This summary concerns the use of Alnuset and some of its characteristics and features according to 
different theoretical approaches (cf. figure 3). These different approaches led to different modes of 
use of the same functionalities of the tool to achieve the same educational goal (conceptual 
understanding of algebraic equality). As in the case of the cross-case analysis concerning Aplusix, 
we can conclude that the different theoretical approaches provide different perspectives to enrich 
the set of potentialities of the features of a DDA. 
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Figure 3. Different modalities of use of Alnuset driven by different theoretical approaches. 
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III. Casyopée cross-case analysis 

III.1. Identification 

 Teams involved:  

o DIDIREM (France): familiar DDA  

o UNISI team (Italy): alien DDA  

III.2. Contextual elements 

School level: 
 DIDIREM Grade 11, 1 group with 30 students and 1 group with 18 students 

 UNISI Grade 13, 1 group 

Physical context: 
Classroom equipped with computers, overhead projector. 

Students work in pairs. 

For UNISI: Students were sometimes involved in collective discussions 

Length of the scenario: 
 DIDIREM: 11 hours 

 UNISI: 12 hours 

Teachers: 
The two teachers involved in the DIDIREM experiment took partly part to the design of the 
experiment In particular, they wrote the exercise sheet. The experiment was designed to be inserted 
in the curriculum of the class. It was well accepted by the institutional context of the school. It is 
worth to be mentioning that Casyopée was not a new DDA for these teachers but that have not 
experimented before the extension of Casyopée developed in ReMath and at the core of the cross-
experimentation. The teachers in the UNISI experiment had no previous knowledge or experience 
with Casyopée.  

III.3. Theoretical frames  
The UNISI team has mainly structured its pedagogical plan according to the Theory of Semiotic 
Mediation (Bartolini Bussi & Mariotti, 2008). A basic assumption of the theory is that mathematical 
meanings are rooted in the action with the artefact, and developed through social interaction in 
classroom. Identifying the semiotic potential of an artefact is the starting point for developing a 
teaching/learning sequence that involves the use of such artefact. This means to identify the 
potential that an artefact has with respect to some mathematical meanings, in relation to the tasks in 
which it is used. This theoretical framework (TSM) inspired both the specification of the 
educational goals and the organization of the activities in iterative cycles. In particular the TSM led 
the UNISI team to devote attention towards the design of the teacher’s action in the pedagogical 
plan. In fact, the teacher plays a crucial role throughout the whole pedagogical plan, especially for 
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fostering the evolution of students’ personal meanings towards the targeted mathematical meanings 
and facilitating the students’ consciousness-raising of those mathematical meanings. 

The DIDIREM team splits its theoretical approach into several theoretical frames which shape their 
pedagogical plan: the Instrumental Approach (Artigue, 2002), the theory of Situation (Brousseau, 
1997) and at last the theory of anthropologic didactic (Chevallard, 1999). The first frame aims to go 
further than a simple familiarization with the DDA and to help the students constructing a 
mathematical instrument. This process goes hand in hand with the learning process. The process is 
accurately designed through a careful choice of mathematical tasks, with an adidactical potential, 
whereas the definition of the teacher's actions and role escapes the design of the PP. Finally, the 
TAD is called upon to manage instrumental distance between institutional and instrumental 
knowledge. 

III.4. Comparison of the UNISI and DIDIREM approaches using the 
construct of didactical functionality  

The two pedagogical plans, evidently share some characteristics but also have apparent deep 
differences. In this section we use the frame provided by the construct of Didactical Functionality to 
develop a more systematic comparison between the two pedagogical plans.  

Tool features 
The two pedagogical plans are not only centred on the use of the same DDA, but also on the use of 
the same DDA features. In fact both exploit especially:  

 features of the dynamic geometry environment: the commands for creating fixed, free or 
constrained points, for dragging free or bonded points, for creating points with 
parametric coordinates, and the corresponding feedbacks of the DDA; 

 features of the geometric calculation environment: the commands for creating 
“geometric calculation” associating numbers to geometrical objects, for choosing 
(independent) variables, for creating function between the selected variable and 
calculation, and the corresponding feedbacks; 

 features of the algebraic environment, including the commands for displaying and 
exploring graphs of functions, for creating and manipulating parameters, for 
manipulating the algebraic expressions of functions, and the corresponding feedbacks. 

Educational goals 
Different educational goals are associated to the use of those features. More precisely, one can 
recognize that both pedagogical plans share a common focus on some mathematical notions: 
function (in particular, conceived as co-variation), variables (independent and dependent) and 
parameters. Moreover the two pedagogical plans present, among other tasks, two optimization 
problems sharing the same mathematical core (see sections…). But, besides those surface 
similarities, there are profound differences. 

UNISI educational goals are to mediate and weave meanings, related to the notions of function, 
variable and parameter. With that respect the UNISI team assumes, on the one hand, that those 
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notions are familiar for students, and, on the other hand, that those notions are not elaborated in 
depth. Hence the UNISI pedagogical plan aims at helping students gain a deeper consciousness of 
the mathematical meanings at stake and re-appropriate them in the more global frame of modelling. 
In addition the UNISI objective includes the shared and decontextualized formulation of the 
different mathematical notions in focus.  

The DIDIREM objectives are mainly to use potentialities of representations offered by Casyopée to 
introduce some new mathematical knowledge concerning quadratic polynomials and studies of 
optimization problems through functional modelling in the context of geometry. This knowledge 
has been chosen for two main reasons: its relevance with respect to the French curriculum and the 
interest to approach it through interaction between different systems of representations.  

Modalities of employment 
In accordance with the different objectives and the different pedagogical cultures, the modalities of 
use are different as well. 

The UNISI pedagogical plan has an iterative structure. Students’ activity with Casyopée alternates 
with classroom discussions, and after each session the students are required to produce individual 
reports on the performed activities. This structure is meant to foster the students’ generation of 
personal meanings linked to the use of the DDA and their evolution towards the targeted 
mathematical meanings together with the students’ consciousness-raising of the mathematical 
meanings at stake. That process is constantly fuelled by the teacher, whose role is crucial. 
Accordingly the teacher’s role is explicitly taken into account in the design of the pedagogical plan, 
which provides hints for his(her) possible actions. The tasks used are optimization problems set in a 
geometrical frame. Their solution and the reflection on these solutions are fundamental steps 
towards the achievement of the designed educational goals. Also the familiarization with the DDA 
has to be considered within that perspective: as already mentioned, it aims at making students 
observe and reflect upon the "effects" of their interaction with the DDA itself. Ad hoc tasks are 
designed for that purpose. 

Instead of that, the DIDIREM team pays specific attention to a progressive use of the DDA 
combining artefactual and mathematical knowledge. Indeed, students work only in the algebraic 
window during session 1, then only in the geometrical windows in session 2; finally section 3 gives 
an opportunity to reinvests the knowledge in the two environments. Moreover, all the tasks 
proposed are mathematical ones and are elaborated in order to allow students make progress alone 
working on the problem and to construct their new knowledge thanks to the feedbacks received 
through their interaction with the DDA. 

III.5. Results of the cross-case analysis together with illustrative 
examples  

Methodology of the cross analysis  
The two teams used differently their theoretical frameworks in the design and in the analysis of the 
data of the experimentation. For the DIDIREM team, the design of the sequence was inspired by 
several theoretical frameworks, Instrumental Approach, TDS and ATD, whilst the analysis of the 
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data coming from the experiment was based on the TDS and Duval’s theory of semiotic registers of 
representation. For UNISI, the theory of semiotic mediation both inspired the design and framed the 
analysis of the data. However, both teams used specific constructs within their own theoretical 
frames, as tools for the analysis. UNISI tries to identify semiotic chains collectively constructed 
during the discussion; that is to say sequences of signs, which show semiotic links with the artefact 
and the mathematics as well. Through such semiotic chains, it is possible to identify the 
development of signs: in fact, their meanings are rooted in the use of the artefact but they are 
expected to evolve, to be de-contextualized and clearly related to mathematics. DIDIREM, referring 
to TDS, tries to characterize the “structuration of the milieu” and of the didactic contract. In 
particular, each transcription is split into episodes and for each episode the researchers specify the 
different “milieu” involved (material milieu, evoked milieu…), the knowledge status (new, in 
progress or acquired) and who is responsible for the discussion (teacher or student). Both teams use 
these respective constructs in order to understand the progression of students' knowledge along the 
sessions, and possible reasons for that progression, taking into account the teachers' mediations.  

In both cases, the way data are collected, analyzed and interpreted was shaped by the selected 
theoretical frameworks. Having in mind the search for possible complementarities between the 
theoretical frames used, it was decided to enrich the analysis by crossing the theoretical tools used 
on the same piece of data. This decision was challenging not only because of the intrinsic difficulty 
of analyzing data coming from an alien experiment, but also because in principle we could not be 
sure of the consistency of this cross analysis. The first challenge was the selection of the piece of 
data. The difficulty resided in the different modalities of use that did not provide the same kind of 
data. Moreover in the UNISI experimentation, a key element of the semiotic mediation process was 
made from the collective discussions, whilst in the French experimentation we could not find 
comparable phases. In fact the most similar situation, e.g. institutionalization phase or situation, 
does not present the same features in respect to the interplay of responsibilities between the actors – 
students and teacher. To overcome this difficulty, it was decided to select two pieces of data from 
the two experiments that were important for both experimentations and presented features for the 
analysis relevant for both teams. These pieces of data are: one excerpt from the transcript of a 
collective discussion and one excerpt from the transcript of a laboratory session where there was 
evidence of collective interaction between students and the teacher. 

The second challenge was the method of analysis: we had at least to choices. Carrying out the two 
analyses separately and then comparing, coordinating the use of the different theoretical tools in 
order to carry out the analysis. We chose the second option. We present below some illustrative 
elements of the analysis carried out and of their results. 

Some results of the cross analysis 

Example 1: Cross analysis of the beginning of a collective discussion (session 4) from the UNISI 
experimentation 

Teacher: “What are the issues in the resolution of this second type… I mean, basically what were 
you asked to do as homework, no? I mean what are the main issues when you try to solve this kind 
of problem, what kind of problem where we looking at… Come on, who wants to start? Come on 
guys. This is the one that… every problem is a different world right? Because every problem has its 
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own solution. What is the important thing that you need to do? You need to try to understand which 
generalities there are and then try to apply them to all the possible problems in the future with and 
without the software because these are also two important aspects and this… the software guy did 
you because it emphasizes particular important issues. Corinna would you like to try to start? 
Break the ice.” 
 
UNISI analysis: The teacher specifies the motive of the activity. She asks to go back to the task 
focusing on Casyopée: in order to make personal senses emerge in relation to the use of the DDA. 
She asks for generalization to promote evolution of personal senses towards mathematical 
meanings. 
 
DIDIREM analysis: The teacher has the responsibility of this episode. She declares the objectives 
of the discussion: double de-contexualization from the task and from the artefact. She also prepares 
the milieu for the collective discussion. She evokes the “material” milieu, the milieus associated 
with the tasks and a fictitious milieu without DDA together with a generic problem. This is 
completely different from the DIDIREM objective. As a matter of fact, the appropriation of an 
artefact and even its transformation into a personal tool is an objective explicitly suggested by the 
instrumental approach favored by DIDIREM.  
 
Example 2: Cross analysis of an excerpt, general tools  
 

2. Cor: “[…] First of all we had to choose the triangle by giving coordinates” 
[Cor recalls the steps to represent the geometrical situation within Casyopée DGE] 

5. Luc: “But you have to choose a mobile point, first […]” 
6. Teacher: “Does everybody agree?[…]How would you label this first part? […]” 
7. Students: “Setting up” 
8. Teacher: “Luc has just highlighted something […] do you see anything similar between the 

two problems?” 
9. Sam: “One has always to take a free point which varies, in this case, the areas considered 

[…]” 
10. Teacher: “Then we have a figure which is…” 
11. Students: “Mobile.” 
12. Teacher: “Mobile, dynamical. Let us pass to the second phase. Andrea, which is the next 

phase? […]” 
13. And: “The observation of the figure would let us see… we need to study that figure and 

observe what the shift of the variable causes…” 
14. Teacher: “Ok, then? Everybody did that, isn’t it?” 
15. Sil: “We computed the area of the triangle and of the parallelogram, we summed them, and 

by shifting the mobile point one observed as [the sum of the areas] varied […]”  
 

DIDIREM analysis: globally speaking, items 2-12 form an episode aiming at recalling the general 
characteristics of the situations 2 (first modelling problem) and 4 (second modelling problem). 
Change of the episode is marked by the teacher who has the responsibility of the episode 
(management and validation, “let us pass to the second phase”). More precisely Cor and Luc share 
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micro-responsibility in item 2 to 5. Cor evokes the material milieu and recalls the actions 
performed. Luc completes Cor’s description. Cor and Luc refer to the situation 4. Then in item 6, 
the teacher breaks the didactic micro-contract (Hersant & Perrin-Glorian, 2005) by putting into 
question what has been said before because he wants to name the first step (“setting up”). 
 
UNISI Analysis: There is an emerging semiotic chain: “mobile point (5) -> free point (9) -> 
variable (13) ->mobile point (15)”. Students recognize that geometrical objects can be treated as 
variables. Students are weaving different meanings related to the meaning of variable. In item 12, 
the teacher has a Semiotic action - request of naming - for promoting generalization and synthesis. 
 
Example 3: Cross analysis of an excerpt: Topaze effect? 
 

1. Prof.: “Uh, a specific button, come on what is it called?” 
2. Students: “OM squared… OM square root…” 
3. Prof.: “Can we find this button, this way of working that lets us do this first part?” 
4. Students: “Geometric calculation.”(English term used bye students) 
5. Others: “Dynamic geometry.”(English term used bye students) 
6. Student in the first row with a white T-shirt: “No, Geometric calculation… Dynamic geometry, 

what is it called, it’s the one where there is the figure.” 
7. Prof.: “ so if we want to call it something in Italian we could give it a name… Shall we write 

geometric calculation like she says? Do you all agree?” 
8. Student: “In Italian.” 
9. Student: “ I don’t understand why in English.” 
10. Prof.: “ Exactly. so, let’s do this since we don’t have the software in front of us anyhow. So 

let’s find an Italian word that you think… 
11. Student: “Calcolatore geometrico.” 

 
One may find a Topaze effect (Brousseau 1997, p.25) when the teacher wants to introduce a 
mathematical sign. It may happen that although the development of the meanings is mature for 
moving to the mathematical context, a gap has to be overcome. Actually students cannot know in 
advance what precisely the link with mathematics is, and to some extent they are invited to guess 
what the teacher wants them to say. But this time the objective is not to please the teacher per se. 
Neither the teacher nor the student feed the “illusion” typical of the Topaze effect: they share the 
objective of the intervention and assume the sense in relation to the common goal of relating 
artefact use and mathematics. For this reason the given answer is senseless, the sense being 
developed, worked on, and weaved together. 

Example 4: Cross analysis of a dialogue during a laboratory session in the DIDIREM 
experimentation  

The following dialogue has been extracted from a laboratory session (session 2). Students have a 
triple task during the episode:  

 To adjust the parameters’ values in an algebraic expression of a quadratic function such as 
the graph of this function become similar to a given graph in the graphical window of 
Casyopée; 
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 To explain the method used; 

 To provide an interpretation of the parameters’ roles. 
This excerpt takes place when J (student) calls the teacher (P) to get help in order to interpret the 
parameters. 
 

1. J : Monsieur dans les méthodes comment on peut mettre ? 
2. L : Ah 
3. J : Parce que nous il n’y a pas vraiment de méthode  
4. L : Oui c’est avec le .. 
5. P : Votre méthode ça consistait à faire quoi finalement ? 
6. J : ben on regardait le graphique par exemple là fallait là décaler donc on pouvait agir sur 

le paramètre 
7. P : Mais la façon dont vous avez décalé, est-ce que vous avez pensé à quelque chose plus ou 

moins consciemment  
8. J : Ben oui par exemple k 
9. P : Vous pensiez quand même à des… quel type de transformation ? 
10. J : Ben des translations 
11. P : Bon des translations et le choix  

 

DIDIREM Analysis: this episode takes place during a learning situation with a particular meso-
didactical contract. Students have to understand links between their manipulations on Casyopée and 
the values of parameters in different algebraic forms. Inside this meso didactical contract, a micro 
contract is initiated by some students (J in particular) where responsibility of knowledge is given 
back to the teacher. In this micro contract, the teacher injects knowledge in the milieu to allow the 
students to continue. The student wants to “explain the method” as it is requested, but to do this, he 
needs the mathematical vocabulary of transformations. Like in the previous Italian excerpt, the 
teacher’s role is to help students to express mathematically the observation in the software. As a 
difference with the Italian, this excerpt is taken during a problem solving phase, with less control by 
the teacher than during a collective discussion. It is then possible that the students are driven 
towards a mathematically formulated method without enough reflection. Certainly the teacher is 
here in difficulty because the pedagogical plan (scenario) included the necessity of a 
mathematisation without planning an adequate period of collective elaboration. 
 
UNISI Analysis: The use of the term “transformation” has not the immediate desired (?) effect of 
making J relate parameter k and the transformation. Instead, it feeds the construction of a semiotic 
chain from the artefact signs “décaler”, etc… to the mathematical signs: “transformation”, 
“translations”, etc. In fact, the term “transformation” is immediately decoded by students as a 
mathematical term. Students’ answer is in tune: they introduce the mathematical term “translation”. 
Despite “translation” is a mathematical term, there is the risk that the meaning attached to it is still 
confined to the actual use of Casyopée. The teacher does not ask students any de-contextualization. 
 
Example 5: analysis of a institutionalization episode 
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1. P et est-ce que ça vous fait penser à quelque chose que vous connaissez depuis la troisième 
ça, à quoi ça sert de factoriser ? Avec une phrase que vous récitiez comme une récitation. 
Qu’est ce que vous récitiez en 3ème ? 

2. J (et d’autres) « Un produit de facteurs est nul quand l’un des deux facteurs est nul » 
3. P répète « Un produit de facteurs est nul quand l’un des deux facteurs est nul « Or ici on a 

un produit de facteurs et graphiquement où est ce qu’on repère que le facteur est nul ? 
4. J Ben quand il est à l’origine 
5. P l’origine c'est-à-dire ? 
6. J O 
7. P O ah bon alors qu’est ce que tu vois en O, O est ici Qu’est ce que tu vois ici en O ? 
8. J ben il y aurait un point qui serait égal à 0  
9. P ah bon ? 
10. J quoique 
11. P quoique … Alors qui peut nous aider, qui peut expliquer comment ce que vous récitiez en 

3ème , comment on pourrait l’utiliser ici ? Qui peut expliquer ça simplement ? C'est-à-dire 
que la forme i c’est une forme qui est comment par rapport à la fonction ? 

12. Un élève : factorisée 
13. P oui factorisée c’est a fois (x-u) facteur (x-v). // On voudrait savoir quand est ce que c’est 

égal à 0 
14. Un élève : quand a=0 
15. P est ce que a peut être égal à 0 dans l’énoncé ? 
16. J (et d’autres) non  
17. Un autre élève : quand x-u = 0 ou quand x-v=0  
18. P voilà! Donc on peut dire que a(x-u)(x-v)=0 est équivalent à dire que x-u=0 ou x-v=0  
19. P donc ça nous donne quoi x=u ou x=v et graphiquement où est ce qu’on lit x=u ou x=v ? 
20. J sur l’axe des abscisses 
21. P sur l’axe des abscisses, à quel endroit ? Quels points précis ? Quand la courbe… 
22. J intercepte 
23. P intercepte … 
24. J l’axe des abscisses 

DIDIREM Analysis: In this episode, what is at stake is the graphical interpretation of the 
parameters u and v of a quadratic function written in factorized form, a quite difficult tasks for the 
students. For that purpose, and trying to overcome the difficulties, the teacher creates a trajectory 
going from factorization to the solving of equations, then from the solving of a factorized equation 
to the solving of the equations associated with its factors, and finally from this resolution to the 
graphical interpretation of the solution in terms of coordinates of the intersections of the graphical 
representation of the function and the x-axis. This is a multi-step and rather complex reasoning. 
Again here, this complexity has not been anticipated by the scenario and then the teacher has to 
improvise. 

He first makes use of the didactic memory of the classroom. The association factorization-equation 
is indeed produced through the recall of a discursive routine used in grade 9. Surprisingly, it works! 
But the mathematical signification of an association produced in such a way is problematic. All 
along the excerpt, the teacher is not in situation of giving responsibility of the progression of 
knowledge to the students. When a student gives an answer other than that expected, he modifies 
the question or asks other students to contribute. An adequate scenario should have taken into 
account the complexity of the relationship between the manipulation of the parameters and the 
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graph behaviour, the necessity of a reflection upon the algebraic form of the expression and its links 
to the graph by way of the notion of zero, and should have planned adequate period of collective 
reflection. 

UNISI Analysis: Within this phase of the dialogue, there is not any reference to the artefact and its 
use. There is only a reference to the task: “comment on pourrait l’utiliser ici?” Parameters u and v 
are linked to transformations of the graph of the function in a much more complex way, as 
compared with the previous excerpt. It seems then that for the teacher, the activity with the artefact 
is not able to support adequately the development of an interpretation of the parameters u and v. In 
addition, even if the teacher asks for students’ contributions, he is not caring whether students are 
conscious of the discourse they are building: objective, rationale,…as if the production of the 
mathematical interpretation aimed at, whatever be the way it is produced, could be considered as 
the sign of the existence of shared, de-contextualized mathematical meanings. 

III.6. Potential offered for the theoretical landscape 

Task 
The idea of task is central in both the approaches: according to the TDS, learning is a process of 
adaptation to a milieu organised so as to cause a disequilibrium, while according to the TSM 
learning is a process of construction of meanings. But both the processes are leaded by tasks. Still 
more, tasks are purposefully designed for leading the learning process. And there is an apparent 
effort for having knowledge develop through the solving of significant problems. 

In coherence with TDS, a task is for DIDIREM associated with a situation (in fact a mathematical 
situation). The a priori analysis of its learning potential is tightly linked to that of its a-didactic 
potential, intended as the possibility for the situation to make pupils generate personal meanings 
with respect to the knowledge at stake in the situation, without the direct intervention of the teacher. 

Tasks are seen and treated under different perspectives by the two teams DIDIREM and UNISI. 
Differences and complementarities can exist between (1) the kind of a-priori analysis of the tasks 
(2) the way tasks are used, (3) and maybe also the ways tasks are intended. For illustrating these it 
is interesting to refer to the following task used in the DIDIREM teaching experiment (beginning of 
the third session). We analysed above (Example 5) the dialogue between two students (and between 
those students and the teacher) doing this task. 

The complete activity encompasses 3 tasks: 

1.  
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2. “Indiquer la ou les méthodes utilisées pour déterminer les valeurs des paramètres”;  

3. “Donner une interprétation quand cela est possible des paramètres” 

Pragmatically, in the analysis of the situation at stake, the focus appears to be on point 1 of the task 
(Activité 1 see above). This part of the task corresponds to a situation of “action” according to TDS 
and has an evident adidactic potential. Interaction with Casyopée is source of insights and 
feedbacks which can allow students to progress in a autonomous way towards the solution, and 
students are not dependent on the teacher for knowing if the task is solved or not. Questions 2 and 3 
do not present these characteristics. Some narrative is asked and then an interpretation of the 
parameters. What is at stake is a relationship to knowledge in terms of formulation associated with a 
reflection on action, but these sub-tasks cannot be attached to a situation of formulation in the TDS 
sense. In fact, it is neither classical in French classrooms to observe communication and formulation 
situations in the sense of the TDS nor to ask students to produce narratives of their research even if 
this practice is well documented in the IREM literature. Most often, after a situation of action, 
formulation is directed by the teacher during a collective phase also comprising validation and 
institutionalisation. Time constraints contribute to this phenomenon as if some reduction of the 
didactic time had to be operated after the expansion generated by the situation of action. This 
general tendency has evidently affected the experimentation and the analysis of it by DIDIREM 
researchers. 

The prominent attention given to task 1 is to some extent confirmed by the way the excerpt is 
presented by DIDIREM. At the very beginning, the attention is explicitly given to point 1 (point 2 
and 3 not being mentioned at all), the points 2 and 3 are then presented in the transcript of the 
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dialogue but are seemingly treated as some kind of information needed for the reader to make sense 
of what happens rather than because important in their own right.  

UNISI thinks the task always together with the artefact. Its analysis is meant to specify the semiotic 
potential of the artefact with respect to the task to accomplish. With that respect all the above tasks 
have crucial importance although because of their nature may contribute differently to determine 
the semiotic potential. 

Task point 1 is analysed with the aim of identifying the personal meanings that can emerge when 
students use the artefact for accomplishing it. Hence the kinds of analysis of the Task 1 made by 
DIDIREM and UNISI are compatible: both encompass an analysis of the utilization schemes of the 
artefact. Both are interested in the potential change that accomplishing that task may generate in 
students’ relationship to knowledge but the two perspectives differ.  

For UNISI, Task 2 and 3 also have crucial importance because of their semiotic nature. The former 
is a (kind of) request to go back to the task that meant that the students are asked to rethink about 
the actual use of the artefact for solving the task. It is a “necessary” step for recalling the personal 
experience developed through that activity and may be useful to focalize on the actual use of the 
artefact. Moreover the request of a verbal production will lead one to a first de-contextualization 
expressed by written signs that provide a first elaboration of meanings. The specification of those 
meanings is requested by the latter task. 

With that respect the formulation of Task 3 is not perfectly clear. It seems related to a particular 
didactic contract on going in that class. In fact, what kind of interpretation of parameters is asked to 
students is not made clear: an interpretation in terms of the use of Casyopée for solving the task 
(J:“[…] on a cherché on pouvait aller de droite à gauche ou de bas en haut […]” Episode 10), or in 
terms of the pertinent mathematical meanings (P: “Vous pensiez quand même à des… quel type de 
transformation ?” Episode 10) ? 

With respect to that, DIDIREM noted in its analysis: “The teacher does not appear concerned that 
for students the meanings attached to the term “translation” is confined to the use of Casyopée”. 
The gap between the interpretation in term of “translation” and the gestures in Casyopée 
environment seems to have also been underestimated by the DIDIREM team. Above, we noted that 
this underestimation is visible in the design of the scenario.  

Social Interaction: Institutionalization vs Classroom Discussion 
In fact, it seems that the discussion situation in the TSM encompasses the two distinct steps of the 
TDS theory: the “formulation step” and the “institutionalisation” step.  

In both approaches the tasks-based activity is followed by a social interaction that sees the 
participation of the teacher; there is also a clear intent of the teacher to make students elaborate on 
their experience during the task and that such elaboration be finalized to make mathematical 
knowledge (we would say mathematical signs) emerge. But there are important differences between 
the kinds of social interaction designed and enacted in the two experiments. 

In the UNISI discussion (consistent with the idea of “mathematical discussion”, Bartolini Bussi, 
1998), the link between the accomplishment of the task and the mathematics has to be built on the 
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texture of personal meanings emerging from the task and just recognized from outside. The 
teacher’s role is to use this texture to make explicit the mathematical knowledge that students 
should learn and to help students build the link. 

This makes necessary a specific didactic contract that has to be settled in the class concerning how 
and why using the artefact to solve the task can be interpreted mathematically and vice versa how 
and why mathematics can be interpreted by referring to artefact and schemes of use. 

The teacher is asked to foster students to elaborate on their own personal meanings: the evolution of 
students’ personal meanings has to be based on previous activities with the artefact and personal 
meanings emerged. No classroom discussion (in the TMS sense) would be possible without the 
active engagement of the students, for instance for making explicit the meanings they personally 
developed, sharing them with classmates and the teacher. This semiotic process that is going to 
occur during a collective mathematical discussion involving the teacher and the students, the 
artefact and the mathematics, is the core of the process of Semiotic Mediation assumed by the TSM. 
The crucial point is how to relate shared meaning with mathematical meanings that for their nature 
are not negotiable but culturally established. In this respect the role of the teacher becomes 
fundamental as well delicate. The system of shared responsibilities that must be settled in the class 
community in order to make this semiotic mediation process take place can be described in terms of 
didactic contract as well in terms of evolution (change of) milieu. In fact, a specific didactic 
contract becomes indispensable in order to make the semiotic mediation process function.  

A didactic contract for the classroom discussion 
The notion of didactic contract seems to be an adequate tool to study a collective discussion. In fact, 
in the UNISI discussion, the link between the accomplishment of the task and the mathematics has 
to be built on the texture of personal meanings emerging from the task and just recognized from 
outside. This claims the need of a specific didactic contract that has to be settled in the class 
concerning how and why using the artefact to solve the task can be interpreted mathematically and 
vice versa how and why mathematics can be interpreted by artefact tools and schema of utilization. 
Of course, this contract should be different from the usual contract, and some (usually considered) 
negative effects linked to the contract (such as the Topaze effect) may be seen under a different 
light. 

In the analysis of another teaching experiment, carried out within the theoretical framework of 
Semiotic Mediation, Falcade (2006) described some rules which could be identified as part 
(constitutive) of the didactic contract related to Mathematical Discussion and specific of one of the 
classrooms involved in the experimental part of her study. Some of these rules are (seem to be) 
specific of the teacher style of intervention and pertinent to the specific artefact used, others on the 
contrary seem to be related to TSM general hypotheses and can be applicable to describe the 
specificity of the didactic contract in place during the collective discussions of our experimentation. 

Here in the following the rules, as they are labelled and expressed in (Falcade, 2006, pp. 285-290).  

 R1 : « L'activité dans l’artefact a une signification dans le monde des 
mathématiques, […] une signification qu'il faut rechercher ensemble ». 
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 R2 : « tout ce qui a été fait dans l’artefact « Cabri » et tout ce qui a été dit lors de la 
discussion collective doit trouver une signification intégrant les différents éléments en jeu ». 

 R7 : « Le travail de construction collective des signifiés nouveaux s'opère, tout 
d'abord, à partir des signifiés personnels déjà construits. Le premier souci est avant tout, 
d'essayer de les expliciter » 

 R11 : [Ce même type de contrat veut aussi que] « ce qui est posé comme « signe » 
reste « signe » et, en particulier, que les objets théoriques ne soient pas soumis aux mêmes 
types de nécessités auxquelles les objets concrets de l'artefact obéissent forcément »  

 R12 : « si l'artefact est un bon médiateur, l'on doit pouvoir fournir une interprétation 
mathématiquement consistante de ses « limites » ». 

In that classroom, previous teaching interventions inspired by the TSM had been enacted. Thus it 
can be assumed that the rules described were well established in the classroom and assured the 
“good” functioning of the discussion in the sense of the TSM. As said by Falcade, taking the 
perspective of the TDS and specifically the use of the notion of didactic contract allowed to 
describe the good functioning of the semiotic mediation process as it developed in collective 
discussions. 

“Un autre apport fondamental de TDS à la TMS a été la mise en évidence du contrat didactique 
spécifique, nécessaire au bon fonctionnement du processus de médiation sémiotique. A partir de la notion 
théorique de contrat, issue de la TDS, nous avons pu identifier les règles principales de fonctionnement 
sous-jacentes à ce processus. Nous avons vu, par exemple, que certaines règles, comme la règle 
fondamentale qui veut que « tout ce qui se passe dans Cabri ait une correspondance dans les 
mathématiques » (R1), ou comme la règle qui exige que « ce qui est posé comme « signe » reste « signe » 
et, en particulier, que les objets théoriques ne soient pas soumis aux mêmes types de nécessités auxquelles 
les objets concrets de l'artefact obéissent forcément » (R11) ou encore comme la règle qui postule que « si 
l'artefact est un bon médiateur, l'on doit pouvoir fournir une interprétation mathématiquement consistante 
de ses « limites » (R12), sont nécessaires à garantir que le jeu interprétatif soit aussi à la portée des élèves, 
c'est-à-dire toute la dévolution possible. » (Falcade, 2006, p. 386) 

The situation in the classrooms which took part to the ReMath experimentation is not comparable 
with that of the experimental class of Falcade’s study. First of all, the teacher involved in ReMath 
experimentation, although belonging to the same research group, was not the same of that of the 
previous study. Moreover, for the class involved in ReMath this was the first experience in 
collective discussions so that it was expected that these rules were not yet established. Nevertheless 
some elements can be detected recognizable as characteristic of the specific contract and in some 
extent can explain the success of the experiment.  

Effects related to the Didactic Contract 
Within the specific didactic contract ruling the classroom discussion, some (usually considered) 
negative effects linked to the contract may be seen under a different light. We are referring in 
particular to the Topaze effect. 

“Topaze wants the student to succeed; after all, part of the didactic contract is the obligation, for the 
teacher, to do all he or she can to help the student succeed. But the way he is going about it, is not leading 
to the student’s learning, but to the student’s producing a correct answer in spite of not having learned 
anything.” (Sierpinska’s notes) 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX II 

49 

As usually intended, the Topaze effect consists in the progressive impoverishment of a task made 
by the teacher who wants to help her students to give the desired answer. This action possibly 
results in the student giving the “correct” answer, but to a question which is radically different from 
the original one which remain unanswered. The teacher reduces step by step the richness of sense of 
the original request, and the students tries her best to guess the desired answer so as to please the 
teacher. The sense of the student’s answer may be no longer related to the sense of the original 
question. The distance between the original task and the richness of senses related to it and the 
actual “answered” task and the poverty of sense related to it is not perceived by the teacher and the 
student, who have the illusion that… 

Within the context of a classroom discussion, according to the specific didactic contract of these 
discussions, one can found a Topaze –like effect in the semiotic tasks. But these do not function as 
Topaze effects. For instance, when the teacher wants to introduce a mathematical sign, or when she 
wants the students select specific elements of the activity with the artefact, ecc. In those cases the 
students may have not the possibilities of knowing what the expected answer looks like (an analysis 
of the characteristics of the milieu could be appropriate for that), and to some extent they have to 
guess what the teacher wants them say. But this time the objective is not to please the teacher per 
se. Neither the teacher nor the student feed the “illusion” typical of the Topaze effect: they share the 
objective of the intervention and according to R1 and R2 induced answers assume the sense in 
relation to the common goal of relating artefact use and mathematics. For this reason the given 
answer is not void of sense, the sense being developed, worked on, and weaved together. Never the 
less, such subtleties make evident the expertise required by the teacher in such collective 
discussions, for avoiding to fall down in the traps associated to the paradox of the didactic contract, 
well identified in TDS. This confirms the interest of combining an analysis in terms of didactic 
contract with the tools offered by TSM for understanding what is really at stake for the students in 
such discussions.  
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IV. MoPIX cross-case analysis 

IV.I. Identification 
IOE – Institute of Education, University of London/ London Knowledge Lab 

ETL – Educational Technology Lab, Education Department, PPP Faculty, University of Athens 

IV.2. Contextual elements 

IOE context 
The IOE teaching experiment took place in a tertiary college in outer London. This is a large 
college, divided between three sites across two London boroughs, primarily providing for 16-19-
year-old students but also for adult students. The provision at the site at which the teaching 
experiment took place is mainly ‘Advanced Level’ courses designed for university bound students. 
Because of the high-stakes nature of these publicly examined courses, there is a strong focus among 
both students and teachers on the demands of the examined curriculum. This affected the way in 
which the IOE team was able to negotiate entry into the college and the design of the teaching 
experiment itself.  

Two of the college mathematics teachers and their divisional manager were involved in the local 
organisation of the experiment, discussing the mathematical focus and the nature of the activities 
for students. They were not prepared to allow the experiment to use time from normal scheduled 
lessons but encouraged students from their classes to volunteer to take part during their non-contact 
time. They suggested to students that they might benefit from taking part, both from mathematical 
preparation for the mechanics module that they were due to start studying the next term and from 
involvement in a novel extra-curricular activity that would ‘look good’ on their applications for 
university places. Following a presentation by one of the IOE team to the students, ten students 
volunteered to be involved. These students were all aged 17-18 and enrolled in the second year of 
an Advanced Level Mathematics course, preparing them for quantitative-based subjects at 
university. Unfortunately it was not possible to find a time convenient for all these volunteers so 
just seven of them (two girls and five boys) were able to participate in the experiment. A weekly 
series of eight sessions of 1h50min was arranged. While all the seven students continued to 
participate for the duration of the experiment, not all were present each week due to other 
commitments such as preparation for examinations or attendance at interviews for university places. 

The importance of the examined curriculum influenced the design of student activities, focusing 
primarily on concepts that were to be addressed in the forthcoming mechanics module. The 
curriculum focus of each session was made explicit to the students so that they would appreciate 
how their experience might relate to their future studies. In one session, a task was included taken 
directly from the textbook that the students would use the next term. Although the college teachers 
were involved in deciding the focus of the activities, they were not able to participate in the 
teaching due to other commitments. Teaching was conducted by a member of the IOE team, while 
another member of the team acted as researcher. 
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Each session took place in the same classroom. This room was equipped with PCs around the 
periphery and a data projector. The students sat around tables in the middle of the room, each 
equipped with a tablet PC. The data projector was occasionally used with one of the tablet PCs to 
demonstrate specific aspects of MoPiX to the whole group or as the focus for a whole group 
discussion of a problem. Most of the time, however, the students worked in pairs, sometimes each 
using their own tablet PC and sometimes putting one of them aside in order to work together. One 
of the students preferred generally to work by himself but the others discussed and collaborated 
well. There were peer interactions both within work pairs and between pairs. Due to absenteeism, 
pairings of students were not fixed, though there was a high degree of stability. 

ETL context 

The ETL teaching Experiment was conducted in a Secondary Vocational Education School in 
Athens. The Vocational Education schools in Greece comprise three grades and accept students 
who have just graduated from the Lower Secondary Education schools (15 years old) as well as 
older students (16 to 19 years old or even adults) who wish to acquire professional competencies in 
a certain domain such as mechanical or electrical engineering. At the end of the 3rd year the students 
are granted a vocational certificate and may enter the labour market directly or sit special exams for 
entering Tertiary Education and continue their studies in a department relevant to the orientation of 
their certificate. The eight 3rd grade students we wished to work with were keeping their options 
open but since it was still early in the year, little was at stake for them at that time. Even so, as both 
alternatives were directly linked to their domain of expertise (mechanical engineering), they all 
shared an increased interest in engineering activities such as modelling and in novel computational 
environments designed for this cause. Thus, when an ETL member asked them if they would like to 
engage in a project that would involve modelling activities using a specially designed 
computational environment, they all voluntarily agreed to participate. 

The curriculum in Vocational Education schools encompasses specialization subjects relevant to the 
orientation the students have selected in the first year of their studies as well as general knowledge 
subjects. Modelling activities are very common in mechanical engineering education and they were 
more or less explicitly included in many specialisation subjects the students were taking during their 
three-year tuition without, however, having a strong connection with the use of technology. 
Mathematics, on the other hand, is also included in the curriculum (as a general subject instructed in 
classroom) but it is mainly perceived as a separate body of knowledge the students must acquire to 
be admitted in Higher Technological Education Institutes. Recognising in this context a gap 
between mathematics and several engineering subjects requiring the use of mathematics, we 
designed a set of activities that would bring mathematics inside genuine engineering procedures 
(such as modelling) using a specially designed computational medium. Since the design of our 
activities was based on the idea of using the technology so as to by-pass conventional practices –
such as keeping apart general and specialisation subjects and sticking to the curriculum’s predefined 
content and proposed teaching methods- we didn’t consider it necessary to directly connect the 
students’ activities to specific curricular goals. 

The regular mechanical engineering teacher to whom we suggested to participate in the design of 
the activities and the experiment declared that he was not interested in such a perspective but agreed 
to provide us his regular school hours (45 minutes each) for the experimentation process, 
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recognizing a mapping between the proposed activities and engineering education. Hence, the local 
organization of the experiment was held by two ETL members, one of which had been a teacher in 
the implementation school for more than seven years. This fact allowed us to have full access to the 
premises and equipment and facilitated our communication with the school administration, the 
computer lab director and the rest of the school teachers who all agreed to yield us the computer lab 
for as many school hours as requested. Because of her previous experience as a mechanical 
engineering teacher in the school, during the experiment, this ETL member acted as a teacher–
researcher, while the second one as a co-researcher. 

The computer lab in which the experimentation process took place was equipped with PCs around 
the periphery -all having access to the Internet- and a data projector. The eight 3rd grade students 
(17 years old), studying mechanical engineering formed groups of two or three and worked together 
for 25 school hours (10 sessions). Each workgroup members shared a PC, a MoPiX manual in 
Greek and a notebook for recording their ideas and remarks. Apart from working in groups, at 
certain phases of the experimentation, the students gathered around a large table at the centre of the 
room and participated in plenary sessions having at their disposal a PC and the data projector. The 
plenary sessions allowed them to discuss and share ideas with other workgroup members, exchange 
artefacts and/or work collaboratively for a common goal. 

Designing activities that would foster communication within the workgroups and among the 
workgroups aimed at providing students the opportunity to discuss, argue and negotiate with their 
peers and engage in joint decision and meaning-making processes at different social levels within 
their classroom. This kind of orchestration is not considered to be a regularity in the Greek 
educational system, since the respective schooling paradigm doesn’t encourage the establishment of 
social norms that support collaboration, inquiry and argumentation. 

Table 1: Comparison of contextual elements 

IoE/LKL ETL 

Tertiary College (University bound) Secondary Vocational Education 

7 students, studying Advanced level 
Mathematics  

8 students, studying Mechanical Engineering 

explicit connection to the standard curriculum not directly connected to standard curriculum 

Year 13, 17 years old 12th grade, 17 years old 

Workgroups of 2, each student with a Tablet 
PC 

Workgroups of 2 or 3, sharing a PC 
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8 sessions – 15 school hours  10 sessions - 25 school hours  

Interactions within and between workgroups Interactions within and between workgroups 

2 IOE researchers, one also acting as teacher 2 ETL researchers, one also acting as teacher 

 

IV.3. Theoretical frames 

IOE theoretical frame 

The primary theoretical framework adopted by the IOE team involved in the teaching experiment is 
multimodal social semiotics (Kress, Jewitt, Ogborn, & Tsatsarelis, 2001; Kress & van Leeuwen, 
2001; O'Halloran, 2005). This informed the design of MoPiX, the design of the teaching experiment 
and the analysis of its results. Although originating in linguistics, this theoretical framework 
challenges the primacy of language as a means of communication and meaning making, 
highlighting the different potentials for meaning offered by different modes of communication. 
MoPiX is designed to provide a multi-semiotic environment involving formal notation of equations 
and visual animated models. The trace of motion of an animated object can also be perceived as a 
Cartesian graph. In addition, the pedagogical plan and the organisation of the teaching experiment 
were designed to enable students to communicate using pencil and paper-based representations 
involving conventional or informal notations or diagrams, using 'natural' language in face-to-face 
speech and by sharing MoPiX objects, equations and models electronically. Each of these modes of 
communication involves its own distinctive system of elements, grammar and meaning potential. 
Moreover, interaction between such different modes creates further opportunities for meaning 
making. In designing the pedagogical plan we thus saw the multi-semiotic nature of the 
environment as providing rich possibilities for students to interpret and to express mathematical 
ideas. 

Social semiotic analysis of communication is not concerned with the cognition underpinning the 
communication or with the intentions of those involved but with the meanings produced in the 
social interaction. Our reformulation of the common research question thus focussed on the ways in 
which students operated with the various modes available to them and the relationships between 
their semiotic activity and mathematical meanings relevant to the educational goals of the teaching 
experiment: 

What concepts of motion are represented through students’ semiotic activity in the context of 
use of MoPiX?  

–How do students operate in MoPiX with the variables x and y, Vx and Vy, Ax and 
Ay? In order to achieve what goals? 
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–What forms of language and other modes do students use to communicate about 
velocity and acceleration as they work to construct animations and to interpret sets 
of equations and graphs? 

–What choices do students make between and within the semiotic systems offered by 
MoPiX and the context of its use in order to communicate meanings related to 
motion? 

Do students’ communications about velocity and acceleration outside of MoPiX vary 
through the course of their experience with MoPiX? 

The data collected and the methods of analysis also reflected this perspective, drawing together 
student productions in different modes (paper-and-pencil, MoPiX programming, speech, gesture) 
and tracing both the meanings produced through each mode of communication and the interactions 
between modes. 

In considering specifically mathematical aspects of multimodality, we refer to Duval (2006), who 
argues (from a different semiotic tradition) that conversion between semiotic systems (which he 
names representational systems or 'registers') is of fundamental importance to mathematical 
learning. Conversion demands that the student distinguishes what is mathematically relevant in each 
system and separates the mathematical object from its representation. The MoPiX environment not 
only demands that students engage in conversion (using different forms of representation for the 
'same' mathematical object) but also that they actively use the representations available in the 
system of equations to effect changes in the visual forms of representation. In the opposite 
direction, the process of 'debugging' faulty animations again demands conversion: identifying those 
equations responsible for the 'buggy' behaviour. According to Duval’s principle, we hypothesised 
that activities in this environment would enable students to develop their understandings of 
algebraic notation and of definitions of motion. This hypothesis, however, did not form a focus for 
our research as our overarching social semiotic perspective directs our attention to communication 
and meaning making in social contexts rather than to investigation of individual cognitive 
development. 

Social semiotics is not a theory of learning. While it can suggest how students may make sense of 
the multimodal texts they experience in the classroom and hence suggests some characteristics of 
good learning environments, it is not sufficient by itself to inform the design of activities for 
learning. The design of MoPiX itself and of the pedagogical plan used in the teaching experiment 
were also influenced by a broadly constructionist theoretical frame. The constructionist approach to 
learning (Harel & Papert, 1991; Kafai & Resnick, 1996) promotes investigation through the design 
of microworld environments. MoPiX is conceived as a constructionist toolkit (Strohecker & 
Slaughter, 2000), a dynamic visual environment that supports construction activities in social 
contexts, based on these principles. Learners use the fundamental elements of the microworld 
(equations and objects whose properties and behaviours are defined by the equations assigned to 
them) to build objects and models with new sets of properties and behaviours. They may then 
activate their constructions to investigate them, forming and testing hypotheses about their 
behaviours. However, interaction with physical representations is not by itself sufficient for 
effective learning, learners need to make sense of their experiences of manipulating representations 
in the context of social interaction with peers and with teachers in order to be able to challenge and 
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test alternative conceptualisations and forms of reasoning. The design of MoPiX facilitates 
collaboration through sharing models electronically, while the teaching experiment sought to 
support and encourage such social interaction through setting tasks that demanded communication 
between peers (both electronically and in face-to-face discussion) and through the arrangement of 
the physical environment. 

Students’ informal ways of experiencing the world often prepare them poorly for understanding 
scientific principles in the area of mechanics. Indeed, students' intuitive assumptions and arguments 
about velocity, acceleration, forces, etc. are often discontinuous with the principles and styles of 
reasoning underpinning the Newtonian model and everyday physical experience does not 
sufficiently challenge these assumptions and arguments (Eckstein & Shemesh, 1989; Graham & 
Berry, 1990). The objects and equations of the MoPiX microworld are designed to behave in 
mathematically coherent ways. This provides an environment that, by exploring and building 
models within the microworld, allows students to construct mathematical meanings. By setting 
students tasks to build dynamic models that behave in ways consistent with their experience of the 
physical world, students' intuitions about motion, forces, etc. may be challenged. 

ETL theoretical frame 

Bearing in mind the contextual elements described in the previous section, the ETL team adopted in 
the design of its teaching experiment a constructionist theoretical perspective (Harel & Papert, 
1991; Kafai & Resnick, 1996). Even though constructionism has been perceived as an 
individualistic theory of learning, the ETL team studied students’ communication and 
argumentation in small group collaborative activity. At a first glance, the constructionist perspective 
appears to be strongly connected to vocational education, in the sense that knowledge construction 
in vocational education is considered to be accomplished through activities that engage students in 
the hands-on construction of external -mainly tangible- artefacts, such pulleys and gears. However, 
the hands-on activities proposed by this paradigm remain fragmented as students rarely have the 
chance to immerse in genuine designing and modelling activities and build artefacts that are 
personally meaningful to them. The products they are asked to construct are predefined and uniform 
while the procedure to follow is predetermined. This fragmentation is also advocated by the fact 
that formal mathematics is taught in school as a separate body of knowledge, detached from the 
students’ vocational activity. The vocational mathematics, on the other hand, embedded in the 
students’ routine activities, remain invisible as students usually apply mathematical procedures 
(such as calculating values using an algorithm or reading a graph) rather mechanically, without 
conceptualising the mathematical models underpinning their actions. The various professional ICT 
tools used in these cases only sustain this fragmentation. Using the constructionist perspective as a 
vehicle to infuse innovation within the existing vocational education schooling paradigm and 
address the fragmentation of the notion of “knowledge construction” in this context, ETL designed 
activities that use MoPiX, a specially designed computational medium, as means to bring visible 
mathematics at the core of genuine engineering activities. 

MoPiX is mainly perceived by ETL as a learning environment designed to allow students to engage 
in constructionist activities. The learners in MoPiX have the opportunity to explore, manipulate and 
build animated models representing different phenomena and situations, engaging in the way in 
meaning making processes. However, as the models’ behaviours are defined and controlled by 
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algebraic equations, the real driving force behind any constructionist activity in MoPiX is the use of 
mathematical formalism. Students employ equations as means to convey meaning while exploring, 
manipulating, designing and developing virtual models. As the equations attributed to the objects do 
not constitute “black boxes”, unavailable for inspection or modifications by the user (for a 
discussion on black and white box approaches see Kynigos 2004), the learner in MoPiX has deep 
structural access (diSessa 2000) to the mathematical models underpinning the behaviours animated 
on the screen. Thus, ETL considers MoPiX as an environment that brings mathematical formalism 
to the foreground in a learning situation where formalism is put to use in a meaningful way. Against 
a rationale supporting that with the help of digital technologies we can at last by-pass the need to 
use formalism in order to access mathematical ideas the ETL team also addresses students’ problem 
of perceiving formalism as meaningless (Dubinsky, 2000) but in a different way: to find uses of 
technology to change the role of formalism so that students can put it in use (and the mathematics it 
embeds) to make constructions and models. In this way, instead of considering students’ use of 
mathematical formalism as distinct or even an obstacle to meaning generation, these two can be 
perceived as interwoven (Kynigos and Psycharis, 2003). The ETL team thus focused on the ways in 
which the MoPiX formalism was used by the students studying both what they did with it and their 
verbal exchanges as they were collaborating to build their models.  

What has also been interesting for the ETL team is the potential to design in the MoPiX 
computational environment half-baked microworlds (Kynigos 2007) i.e. microworlds that 
incorporate an interesting idea but are incomplete by design so as to invite students to deconstruct 
them, build on their parts, customize and change them, eventually constructing a new artefact that 
could be distinctly different than the original one. Half-baked microworlds are by nature designed 
for instrumentalisation (Guin and Trouche 2002) since they serve as intriguing starting points and 
idea generators, stimulating students to transform them from a plain artefact (i.e. a piece of software 
constructed by humans) to an instrument (Rabardel 2001), engaging in the way in constructionist 
meaning-making processes. However, since MoPiX fosters collaboration among peers through 
model sharing and exchanging, we particularly focused on the idea of developing half-baked 
microworlds for which the instrumentalisation process will take place in a collaborative context. 

Taking into account those aspects of the MoPiX computational environment and drawing on the 
socio-constructivist paradigm, ETL designed a Pedagogical Plan that provided students the 
opportunity to interpret, manipulate and use the available mathematical formalism in the process of 
creating and controlling animated models while collaborating with their peers at different social 
levels. The “Juggler” half-baked microworld designed for the Pedagogical Plan invited students to 
deconstruct it so as to explore its functionalities and (re)construct it to embed their own ideas, 
engaging in the way in meaning making processes. The meanings generated, however, were not 
predefined by the researchers so as to a priori correlate them with specific curricular goals, but were 
considered to be emergent and shaped by the students’ mathematical and social activity. Thus, the 
ETL PP addressed open didactical goals that did not directly correspond to specific National 
Curriculum educational goals.  

IV.4 Comparison of didactical functionalities 

Differences in the educational goals of the two teaching experiments and in their theoretical 
orientations led the two research teams to focus on different sets of didactical functionalities. These 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX II 

58 

are summarised in Table 2. The one aspect that was clearly significant for both teams was related to 
use of the MoPiX library of equations. Not only was this characteristic of the DDA salient for both 
teams but it was also perceived to serve a similar function for both in relation to students making 
sense of the equations in order to achieve the respective educational goals. This function was 
facilitated in both cases by the forms of pedagogy used, shaped by the shared constructionist 
framework, that enabled students to form their own approaches to problems and, indeed, to define 
their own problems. 

The other didactical functionalities highlighted by the IOE teaching experiment focus on the 
specific forms of representation provided by MoPiX, the epistemological consequences of these 
representations and the semiotic activity of students in relation to these representations and to other 
social and semiotic aspects of their environment. It is apparent that these sets of didactic 
functionalities become salient to the IOE team through the lens of their social semiotic framework. 

Table 2: Didactical Functionalities 

Team characteristics of the 
DDA 

educational goals modalities of use 

Both IOE and 
ETL 

The library of 
equations provided a 
basic set of equations 
with very limited 
variation. 

The library allowed students 
to get acquaint with the 
MoPiX environment, 
interpret and use equations 
that had an easily identifiable 
pattern in the X and Y axis 
and were classified in 
categories whose names 
revealed more or less the 
assigned behaviour. 

The limited variation in the 
equations challenged students 
not merely to confine 
themselves in using specific 
ready-made equations but to 
seek for ways to define new 
ones in order to express ideas 
that were not accurately 
described by those provided 
in the library. 

 

  This allowed students to 
develop a strategy of paying 
attention to the meaning of a 
limited sub-set of equations 
while using others in a ‘black 
box’ mode 

This strategy was enabled in 
both teaching experiments by 
pedagogies that encouraged 
students to develop their own 
problem solving approaches 
rather than directing them to 
use specific methods. 
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IOE The symbolic 
representation of 
motion is always 
separated into 
horizontal and vertical 
components. 

This form of representation 
provided students with an 
alternative language that 
moved away from the 
‘everyday’, enabling new 
analytic and quantitative 
approaches to defining and 
describing motion. 

The language of components 
was used by teachers and 
students throughout the 
teaching experiment both in 
formal ‘MoPiX language’ 
(e.g. ‘Vx’) and in less formal 
adaptations (e.g. ‘x velocity’).

IOE The graphical 
representations of 
MoPiX support 
interpretation of 
graphs as static 
patterns or as traces of 
motion, while the 
symbolic 
representations 
(always expressed in 
terms of a parameter 
of time) support the 
dynamic 
interpretation. 

The dynamic interpretation 
supported by both symbolic 
and graphical representations 
seems more aligned with our 
educational goals. 

However, students’ adoption 
of static or dynamic 
interpretation was affected by 
interaction with the other 
semiotic resources available 
in the immediate context. 

ETL The mathematical 
formalism as means of 
expression 

Interpret, manipulate and use 
the mathematical formalism 
to convey meaning in the 
process of designing, 
creating and controlling 
animated models. 

Students used the 
mathematical formalism as 
means of expression in the 
process of exploring, 
manipulating, designing and 
building animated models. 

ETL Deep structure access 
to the mathematical 
models underpinning 
the behaviours 
animated 

Linking the animation 
generated on the screen to the 
model’s symbolic facet, 
interpreting ready-made or 
new equations in terms of 
their structure and content. 

As students attempted to 
debug flawed animations they 
engaged in back and forth 
processes of constructing a 
model predicting its 
behaviour, observing the 
animation generated, 
identifying the equations that 
are responsible for the 
“buggy” behaviour and 
specifying which and how 
particular parts needed to be 
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fixed. 

ETL Potential to develop 
half -baked 
microworlds  

Deconstructing the 
microworld’s model so as to 
link the algebraic equations 
to the animations generated. 
Use the available 
mathematical formalism to 
build new equations so as to 
reconstruct the model, 
attributing it new behaviours. 
Possibly extending the 
available mathematical 
formalism, building a new 
vocabulary. 

Half-baked microworlds were 
used Designed for 
instrumentalisation / 
incorporate an interesting idea 
but are incomplete by design. 

They constitute intriguing 
stating points and idea 
generators. Students 
deconstruct it, customized and 
changed it, eventually 
constructing a new artefact 
that could be distinctly 
different than the original one.

 

IV.5 Results of the cross-case analysis together with illustrative 
examples 

We present two examples of episodes taken from our data, the first from the IOE teaching 
experiment and the second from the ETL teaching experiment. An analysis of each episode is 
provided from the perspective of the experimenting team and a cross-analysis from the perspective 
of the other team. A commentary is then presented, highlighting the similarities and differences 
between the two analyses. 

Episode 1: Changing the direction of motion (familiar IOE teaching 
experiment) 
In the seventh session, students were introduced to the idea of acceleration applied to an object at an 
instant. They experimented with applying acceleration equations of the form Ax(object_1,20)=3 
(applying an acceleration of 3 units in the horizontal direction when time is 20), observing the effect 
as a sudden change in direction. They were then posed the task of using such acceleration in order 
to draw a square. In an earlier session students had worked on the outwardly similar task of drawing 
shapes (not including a square) by making changes in velocity. It was here that Ron decided to start. 
Rather than using acceleration, he first used velocity equations to turn the corners of his square then 
started the task of drawing a square using acceleration equations.. 

In Table 3 and Table 4 we present an overview of Ron’s solution process 

Table 3: Ron's construction of a square using velocity to change direction 

time  duration  sub‐problem  trials  notes 

5:00‐7:00  2min  adding  basic  equation  sets  for 
vertical  then horizontal movement 

4  incomplete  subsets 
trialled then added to; 
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to object 1  final  complete  set  not 
trialled 

7:00‐10:30  3min30  adding Vx/Vy for t=20 
and Vy for t=40 

4  strategies: 
change sign 
change size 
correct  solution  not 
achieved 

11:12‐12:12  1min  editing Vx/Vy for t=20  1  correct 

12:12‐12:50  0min38  adding Vx for t=40  1  correct 

12:50‐13:40  0min50  adding Vx/Vy for t=60  1  correct 

13:40‐14:25  0min45  adding Vx/Vy for t=80  1  correct 

14:25  general statement explaining to his partner how to use Vx/Vy to turn 90°  ‐ change 
from (3 0) to (0 ‐3) 
“ When you want  it to turn you got to say at 20, or whatever you want, Vy equals 

zero, Vx equals  three, whatever what happened, at 40, Vx equals  zero, Vy equals 

minus three, at … “ 

 

Table 4:Ron's construction of a square using acceleration to change direction 

time  duration  sub‐problem  trials  notes 

22:48‐23:00  0min12  adding  basic  equation  sets  for 
vertical  and  horizontal  motion  to 
object 3 

1  correct 

23:00‐34:00  11min  adding Ax/Ay for t=20  14  strategies: 
change sign of Ax or Ay 
change  size  of  Ax  or  Ay 
(double;  very  large;  very 
small) 
remove Ax or Ay 

34:14‐36:33  2min19  adding Ax/Ay for t=40  3  Ax added first then trialed 
Ay added and trialed 
Corrected Ay (change sign) 
added and trialled 

36:33‐38:00  0min27  adding Ax/Ay for t=60  2  Ax/Ay  both  added  then 
trialled 
Corrected Ay (change sign) 
added and trialled 

38:00‐40:00  2min  adding Ax/Ay for t=80  5  Ax/Ay added then trialled 
corrected Ay (change sign) 
added and trialled 
corrected  Ax  and  Ay 
(change  size  of  both) 
added and trialled 

40:00‐44:16  4min16  editing  Ax/Ay  for  t=80  ‐  informed 
by inspecting equations 

2  object  1  flipped  and 
inspected 
corrected Ax (change sign) 
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added and trialled 
pause (30sec) 
several  equations 
removed to stage 
pause (60sec) 
corrected Ay (change size) 
added and trialled 

44:16‐46:00  1min44  inspection of equations pointing at Vx and Vy 
 
Table 5 presents a comparison of Ron’s processes as he attempted the two tasks. 

Table 5: Summary of Ron's solution processes 

Velocity Acceleration 
tentative start, adding and trialling subsets of 
basic motion equations for first side of square 

confident start: basic equation set added 
immediately 

trial and improvement (4 trials) to achieve first 
turn; change sign/ swap values strategy 

trial and improvement (14 trials) to achieve first 
turn - wide range of strategies 

rapid, accurate addition of equations for 
subsequent turns without trialling 

subsequent turns: x and y components added and 
trialled separately; only sign corrections needed 

general statement for producing right turns inspection of equations and extensive pause for 
thought 

 

The original analysis by the IOE team and the cross-analysis by the ETL team are presented side-
by-side below. 
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Analysis and Cross-analysis of Episode 1 
IOE analysis ETL cross‐analysis

In  the  seventh  session,  students  were  introduced  to  the  idea  of 

acceleration applied  to an object at an  instant. They experimented 

with applying acceleration equations of the form Ax(object_1,20)=3 
(applying an acceleration of 3 units in the horizontal direction when 

time  is  20),  observing  the  effect  as  a  sudden  change  in  direction. 

They were then posed the task of using such acceleration in order to 

draw  a  square.  In  an  earlier  session  students  had worked  on  the 

outwardly similar task of drawing shapes (not including a square) by 

making  changes  in  velocity.  It was here  that Ron decided  to  start. 

Rather  than using  acceleration, he  first used  velocity equations  to 

turn the corners of his square. 

Initially Ron attributed  to his object  ready‐made equations  that he 

found  in  the  “Equations  Library”  classified  under  the  “Horizontal” 

and  “Vertical  Motion  Equations”  categories.  As  he  had  already 

gained  familiarity with  the  equations  of  those  two  categories  and 

the meaning their symbols conveyed, Ron carefully selected only the 

equations that would assist him in drawing a shape and disregarded 

other  ones  he  found  classified  in  the  same  categories  (e.g.  the 

“amIHittingtheGround” equation). Having worked before with shape 

drawing using motion equations, Ron  chose  to bring  in  this  task a 

strategy that he had previously followed and had been proven to be 

successful.  Thus,  although  he  initially  attributed  to  his  object  an 

acceleration  equation,  he  preferred  to  investigate  the  role  of  the 

velocity equations  ‐instead of acceleration equations‐  in drawing a 

square, which seemed to be consistent to what he had achieved up 

to that point. 

After some initial hesitation he created his object, assigned it a basic 

set  of  motion  equations  and,  after  a  short  period  of  trial  and 

improvement  using  strategies  such  as  changing  the  signs  or 

swapping the values of Vx and/or Vy, found the necessary equations 
to turn the first corner of the square. He then completed the other 

corners of this square efficiently and accurately.  

Having identified the meaning the symbols in the velocity equations 

conveyed  and  having  particularly  articulated  an  understanding 

regarding the variable of time and  its specific role  in the equations, 

Ron performed a series of changes not only on the right part of the 

equation  substituting one numerical  value  to  another, but also on 

the  left  part  of  the  equation  substituting  the  variable  of  time  to 

specific arithmetic values. The continuous changes  in  the values as 

part of his experimentations with the velocity equations did not just 

confine  in  substituting  one  arithmetic  value  for  another  but  also 
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involved sign changes to signify changes in the object’s direction.

Ron’s  initial systematic  trial and  improvement strategy of changing 

the sign or swapping the values of the new velocity worked well  in 

this  case  because  of  the  nature  of  the  relationship  between 

horizontal  and  vertical  components  of  velocities  of  perpendicular 

motions.  

Ron’s  initial systematic  trial and  improvement strategy of changing 

the sign or swapping the values of the new velocity worked well also 

because he had deep structure access  to  the symbolic  facet of  the 

model  animated  on  the  screen.  In  the  process  of  debugging  his 

model,  Ron  pressed  the  “Play”  button  to  observe  the  animation 

generated and flipped his object to identify the equation responsible 

for  the  buggy  behaviour  several  times,  developing  in  the  way 

meaningful  connections between  the mathematical  formalism  and 

the  graphical/visual  representation  of  the model.  Specifying  each 

time which equations needing to be fixed, Ron performed a series of 

changes editing the symbols of the velocity equations. 

On completing the task, his growing confidence was apparent as he 

explained spontaneously to his partner how to make an object turn 

right‐angled corners. 

Mentioning  to his partner  that he could use “20 or what ever you 

want” as the time point at which changes to the values of velocities 

should be made  so as  to bring changes  the object’s direction, Ron 

seems to have reached a higher level of abstraction as he appears to 

have  identified  “20”  not  as  a  fixed  arithmetic  value  necessary  in 

drawing any square but as a value that could be of the user’s choice. 

He  then  started  the  task  of  drawing  a  square  using  acceleration 

equations. This  task was clearly seen as parallel  to  the one he had 

just completed as he kept  this model of a  square  formed by using 

changes in velocity on the screen and constructed his second model 

next to it, running both simultaneously and comparing the results at 

each stage. After making a more confident start to creating the basic 

motion of the new object, Ron then ran into difficulties.  

Ron used the model he had developed before as a starting point to 

go  further  with  his  experimentations  with  the  acceleration 

equations.  Thus,  he  initially  attributed  to  his  new  object  the 

equations he used to make the first object move upwards and draw 

one of  the  square’s  sides bringing  in once again  strategies  that he 

had successfully employed before.  
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As  he  tried  to  turn  his  first  corner,  the  change  sign/swap  values 

strategy no longer worked. At first he did not appear to see how to 

overcome  this,  resorting  to  alternative  strategies  such  as doubling 

and  trying  extreme  large  and  small  values  of  acceleration.  These 

strategies  focused  only  on  the  values  of  the  acceleration  and  his 

exploratory  attempts  appear  to  take  no  account  of  the  desired 

values of the velocity. After 11 minutes and 14 trials he succeeded in 

finding  the  values  of  acceleration  needed  to  turn  the  first  corner. 

Having  achieved  this,  he  proceeded  to  turn  the  other  corners 

successfully  and  relatively  efficiently,  having  to make  only minor 

corrections. 

As he had already created a model in which he used the velocity as 

the varying quantity inducing changes to the object’s direction, Ron 

focused on producing a new model having the exact same effect to 

the object’s direction, using this time the acceleration as the varying 

quantity instead of the velocity. The strategies he selected to use in 

this case also seemed to differentiate.  In order to produce the first 

turn, Ron made several changes to the arithmetic value on the right 

side  of  the  X  and  Y  acceleration  equations.  Nevertheless,  these 

changes  seemed  to  be  coherent  as  he moved  from  doubling  the 

value of the acceleration he had previously attributed to his object 

to  giving extremely  large  and  small  values, observing  in each  case 

the  animation  generated.  At  that  point  Ron  didn’t  seem  to  have 

developed concrete  links between  the changes  in acceleration and 

the  changes  in  direction.  The  fact  however  that  any  actions  he 

performed  to  the model’s symbolic  facet  (e.g. editing/modifying or 

at  several  times  inserting/removing  acceleration  equations) 

produced  a  direct  change  to  the  visual  result  generated  on  the 

Stage, gave Ron the opportunity to gradually move to a more solid 

conceptualization  of  the  mapping  between  direction  and 

acceleration  and  to  continue  his  construction  having  identified  a 

pattern of changes to be made so as to make the object turn. 

When he came to the final corner, wishing to make the object stop, 

he encountered new difficulty as the pattern of changes of sign and 

values  that  was  successful  in  turning  corners  was  not  useful  for 

coming  to  a  stop.  This  seemed  to  require  him  to  seek  a  clearer 

understanding  of  how  acceleration was working  in  his model;  he 

flipped over  the  two models  and  examined  the  equations used  in 

Coming  to  the  final  corner, Ron  seemed  to have  realised  that  the 

pattern he had previously indentified and successfully used wouldn’t 

make his object come to a stop. Thus, instead of making any attempt 

to attribute the “3” or “‐3” value to the X and Y axis acceleration as 

he did before, he decided to explore the potential of attributing to 

both accelerations the “‐6” value. At this point, Ron seemed not to 
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each  case, apparently  comparing  the  values  of  velocity  and  of 

acceleration  at  each  of  the  corners.  With  significant  pauses  for 

thought,  he  succeeded  in  adding  correct  acceleration  equations 

without further trials. Finally, having completed a correct model, he 

spent time inspecting the equations of the original model built using 

changes  in velocity, pointing  to  the  various  values of  velocity as  if 

calculating what acceleration would be needed to achieve the same 

effect. 

have exactly specified the way  in which changes in the acceleration 

equations  affected  the  velocity  of  the  object  (so  as  to make  the 

necessary  changes  in  the acceleration values and  cause  the object 

stop at a specific time point). In this case the deep structure access 

the  user  has  in  the MoPiX  environment  was  again  proven  to  be 

handy as Ron flipped both his objects to  inspect the symbolic facet 

of the two models. Recognizing an equivalence between these two 

models,  Ron  seemed  to  be  calculating  at  his  second  model  the 

values of the X and Y velocities for each time  instance (through the 

“Vx(ME,t)=Vx(ME,t–1)+Ax(ME,t)”  and  the  “Vy(ME,t)=Vy(ME,t–

1)+Ay(ME,t)”  equations)  and  compare  them  to  the  ones  that 

appeared on his first model in the form of “V = an arithmetic value”.  

Ron’s earlier experience with MoPiX enabled efficient association of 

change of direction of motion with  change  in  values of horizontal 

and  vertical  components  of  velocity.  However,  his  initial  use  of 

acceleration to achieve a similar effect did not appear to make use 

of  the  concept  of  acceleration  as  change  in  velocity.  Engagement 

with the symbolic mode in MoPiX and interaction between this and 

the animation mode enabled him to complete the task successfully. 

His  final  period  of  inspection  of  the  sets  of  equations  for  both 

objects,  pointing  in  turn  to  the  velocity  equations  used  at  each 

corner of  the original model,  suggests a move  towards a  focus on 

acceleration as change in velocity. 

 

Initially Ron seemed to be attempting to make connections between 

a varying quantity (the velocity in the first case and the acceleration 

in the second) and the changes in direction to be produced so as to 

make his object  turn. He  started  inserting and changing arithmetic 

values on the velocity and acceleration equations and at each time 

started the animation to observe on the screen the graphical effect 

of  his  actions.  The  deep  structure  access  and  the  linked 

representations  gave  Ron  the  opportunity  to  develop  an 

understanding between  the changes  in direction  (the visual effect) 

and  the  modifications  made  on  the  acceleration  and  velocity 

equations  (the  manipulations  performed  using  the  mathematical 

formalism). 

However,  at  the  last  part  of  his  experimentations  with  the 

acceleration  equations,  Ron  seemed  to  develop  an  understanding 
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regarding  the  relationship between  the  two  varying quantities  (i.e 

the velocity and the acceleration) in drawing the squares. Up to that 

point,  he  didn’t  seem  to  have  made  any  connections  between 

velocity and acceleration as in order to construct the first model he 

merely manipulated and modified velocity equations, while in order 

to construct the second one, he solely used acceleration equations. 

Any  modifications  made  to  each  one  of  them  were  regarded  in 

isolation.  Flipping  the  two objects,  the  symbolic  facets of  the  two 

models were put the one next to the other. Needing to calculate the 

velocity at each  time  instance at  the second model and match  the 

values  calculated  to  the  ones  that  appeared  at  the  first  one,  Ron 

came  to  use  the  “Vx(ME,t)=Vx(ME,t–1)+Ax(ME,t)”  and  the 

“Vy(ME,t)=Vy(ME,t–1)+Ay(ME,t)”  equations  which  describe  the 

relation  between  the  acceleration  and  the  velocity  at  each  time 

instance. 
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Commentary from ETL perspective on the two analyses of Episode 1 
Analysing the data of the “Changing the direction of motion” episode, particular attention was paid 
by ETL to the ways in which the student used the available mathematical formalism in order to 
construct and manipulate animated models in the MoPiX environment. ETL has put emphasis on 
the student’s experimentation process with the MoPiX equations, while the final production of the 
task (i.e. the square drawn using motion equations) as well as the curricular goals set in the task 
design (i.e. the generation of meanings about acceleration as a change in velocity) were not 
considered to be of primary importance for the analysis of the episode. Moreover, although it is 
apparent from the IOE analysis that the student engaging in the task did generate meanings about 
the notion of acceleration as a change in velocity, ETL chose not to focus on the generation of 
meanings itself -as one of the students’ achievements- or the ways they were generated through the 
student’s interaction with different semiotic systems, but primarily on the ways the mathematical 
formalism served in this process as a resource for the students. 

Drawing on our own experiment and analysis -where the students constructed meanings for the role 
of equations in the models animated by employing the available mathematical formalism in specific 
ways- we tried to indentify a mapping between the IoE student’s and the ETL students’ strategies 
and approaches in using and manipulating MoPiX equations to make sense of the situation at hand. 
Thus, going through the IOE data, we focused on particular incidents in which the student seemed 
to interpret MoPiX equations as well on incidents in which he performed changes to ready-made 
equations he found in the “Equations Library” or to equations he constructed himself (substituting 
for example arithmetic values for other ones and/or substituting the variable of time for specific 
arithmetic values). The meaning generation process in both the IoE and ETL experiment is 
perceived by ETL as being in close relation to the equation interpreting and editing procedures in 
which the students engaged as they attempted to define and control the behaviours of their models.  

However, in the analysis of the IoE episode, ETL also gave emphasis to specific characteristics of 
the DDA as having an important role in student’s meaning making processes. The deep structure 
access MoPiX allows his users to have to the models animated and the linked representations (i.e. 
the symbolic and the graphical) were considered to be two of those characteristics. In certain phases 
of the experimentation process we identified incidents in which the IoE student, after starting and 
observing the animation, flipped his object to look for the equations that needed to be fixed so as to 
produce the desired visual effect, developing in the way meaningful connections between the 
mathematical formalism and the graphical/visual representation of the model. In other cases, 
flipping objects and putting side by side the symbolic facets of two equivalent models, allowed the 
IoE student to inspect and compare the equations comprising these models, using in this way the 
mathematical formalism as means to develop an understanding for the relationship between the 
specific varying quantities appearing in both models. In both the IoE and ETL experiment, the deep 
structural access and the linked representations are perceived by ETL as two of the DDA’s 
characteristics that support students in their explorations and experimentations with the 
mathematical formalism and have a substantial role in the students’ meaning generation processes. 

On the other hand, the IoE analysis of the “Changing the direction of motion” episode doesn’t 
clearly refer to specific characteristics of the DDA as playing a crucial role in the students’ meaning 
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generation process. Nevertheless, it is apparent that the fact that the symbolic representation of 
motion in MoPiX is always separated into horizontal and vertical components was taken into 
account in the analysis as an element supporting students in associating changes to the animation 
generated on the screen to the changes performed by the student to the acceleration and velocity 
equations.  

Episode 2: “gineprasino” (ETL alien teaching experiment) 
Two students working together with the “Juggler” half-baked microworld set themselves the goal of 
programming a moving ball to change colour as it passes another object. 
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Analysis and cross-analysis of episode 2 

  ETL data and analysis  IOE cross‐analysis

1  S1  What  I want  to  happen  is  that: when  the  ball  is  above  the  ellipse  to 
become red and when it is below the ellipse to become green. I don’t care about 
when it hits [i.e. the ground]. Can we do this?  

everyday language used to describe the goal of the activity

2  S2  You have to define something. How did you define the plane which is the 
ground? How did you define that on the right side there is a wall and that you 
can’t go beyond this wall? [The “ground” and the” wall” are elements of already 
existing equations that the students had used].  

related to the MoPiX meta‐action ‘define’

‘ground’,  ‘wall’  are  boundary  terms:  there  is  a  convergence 

between  their  everyday  use  and  their  use  as  components  of 

MoPiX terms 

3  S1  [To  R1]  Excuse  me  …  The  x,  y  coordinates.  Can’t  the  environment 
recognize them? Their values. Where the objects are situated. Can’t it recognize 
them? 

mathematical  x,  y  coordinates  – mathematises  the  everyday 

expression ‘where the objects are situated’ 

4  R1  Yes.

5  S1  It  can  recognize  them.  So  I  can  say  that  I want  this  [i.e.  the  ball]  to 
change colour.  

everyday language to describe the goal

6  R1  Yes?

7  S1  When  it  is  situated  in a Y below  the Y of  this one  for example  [i.e.  the 
ellipse].  

mathematical use of y, transition from the everyday expression at 

turn 1 

8  R1  You know … I’m thinking … Will the ball know when it is below or above 
the ellipse?  

R1 introduces anthropomorphism “will the ball know”

9  S2  That’s what we will define. We will define the Ys.

10  S1  This. The: “I am below now”. How will we write this? adopting  the  anthropomorphism  of  R1  at  turn  8;  this  is  also 
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compatible with the MoPiX term “AmIHittingGround”

The  association  between  the  desired  goal  and  previous  activity 

with ‘ground’ and ‘wall’ continues from turn 2. 

11  S2  Using the Y. Using the Υ. The Y. That is: when its Υ is 401, it is red. When 
the Y is something less than 400, it’s green!  

further mathematisation of the goal, using a specific value 400 (as 

a generic example?), further transition turn 1 (S1) to turn 7 (S1) to 

turn 11 (S2) 

12  S1  Let’s start on that. Let’s do it.

  Starting developing  the equation on  the environment’s  “Editor”, 

the  students  came  across  the  fact  that  there  was  no  in–built 

MoPiX symbol  (such as  the “x”, “Vx”,  that  respectively  represent 

the position and the velocity  in the x–axis) to express the  idea of 

an object becoming green under certain conditions. The first thing 

they  did  so  as  to  overcome  this  problem was  to  invent  a  new 

symbol  that would express a varying quantity. The “gineprasino” 

(i.e. “become green” in Greek) symbol was decided to represent in 

the  “template”  the  varying  quantity  and  the  “t”  variable  to  be 

used so as to describe the “at any time instance” aspect. 

Creation  of  the  new  symbol  “gineprasino”  (“become green”) 

relates MoPiX language to the original everyday expression of the 

goal of the activity. This can be considered a new boundary term – 

to  be  meaningful  both  in  everyday  language  and  in  MoPiX 

programming. 

This is what they want to happen. 

  Having  completed  the  left  part  of  the  equation  (i.e.  the 

“gineprasino(ME,t)=_______”) and  in order to complete the right 

part  as  well,  the  students  used  –as  noted  before–  the  Y 

coordinates  of  the  two  objects  and  the  less  than  sign  to  relate 

them. Surprisingly,  the way  in which  they used  the Y  coordinate 

concept  for  each  object  was  completely  different.  The  ball’s  Y 

coordinate was expressed in terms of a quantity varying over time 

(i.e. the “y(ME,t)”), while the ellipse’s Y coordinate was expressed 

The Equation Editor helps to structure the kind of expression that 

can be formed.  It  is not clear what role ME or t might play. They 

may  be  included  simply  by  pattern  following.  Students  have 

already established a difference between the use of specific values 

and variable  t and would be  likely  to  recognise  that  they do not 

want to specify a single value.  

The  development  of  the  right  hand  side  of  the  equation 
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in  terms  of  the  constant  arithmetic  value  corresponding  to  the 

object’s at that time position on the Stage (i.e. the “274”). Adding 

the  “less  than”  sign  in  between,  the  first  equation  eventually 

developed was the “gineprasino(ME,t)=y(ME,t)≤274”. 

y(ME,t)≤274 is not surprising to me!

“gineprasino(ME,t)=y(ME,t)≤274”  is  a  close  translation of  “When 

the  Y  is  something  less  than  400,  it’s  green”  in  turn  11.  This 

completes the transition from the everyday expression of the goal 

to expression of the goal in MoPiX formalism. The structure of the 

expression  remains  essentially  the  same,  though  the  order  is 

reversed  to  be  compatible  with  the  standard  MoPiX  equation 

convention. 

  Unexpectedly, this equation didn’t cause the ball to become green 

since it solely described the event to which the ball would respond 

(being below the ellipse) and not the ball’s exact behaviour after 

the event would have occurred  (change  its colour). To overcome 

this obstacle, the students decided to construct another equation 

in which they tried to find out ways to integrate the “gineprasino” 

variable. The  structure of an equation  they had previously used, 

the  “Vx(ΜΕ,t)  =  (not(amIHittingASide(ΜΕ,t–1))  ×  (Vx(ΜΕ,t–

1)+Ax(ΜΕ,t–1))  +  (amIHittingASide(ΜΕ,t–1))  ×  (Vx(ΜΕ,t–1)×–1)” 

which explains what happens  to a ball’s velocity when  it hits on 

one  of  the  “Stage’s”  sides  and  the  way  in  which  the 

“amIHittingASide(ΜΕ,t)”  variable  deriving  from  the 

“amIHittingASide(ME,t)=(x(ME,t)≤  0  or  x(ME,t)799)  and 

Vx(ME,t)≠0”  equation  was  incorporated  in  it,  were  the  two 

elements  that  the  students  recognised  as  helpful  in  the 

construction of their second equation. Recognizing the “Vx(ME,t)” 

equation’s  similarity  to  the  one  they  were  trying  to  develop  –

instead  of  what  happens  to  the  velocity  under  certain 

circumstances they would determine what happens to the colour– 

This  stage mirrors  the  students’ previous experience when using 

“amIHittingGround”,  which  they  assumed  would  have  the 

immediate effect of making the ball hit the ground. 

(The relevant data is not included but I assume that at some point 

they discovered that they needed both this equation and the one 

defining Vy in terms of it in order to make the ball bounce off the 

ground.) 

Having  made  an  association  between  the  structure  of 

gineprasino(ME,t)=y(ME,t)≤274 and that of the amIHittingGround 

equation,  drawing  on  the  everyday  language/  boundary  term 

association already made at turn 2, they are then able to associate 

their goal with  the previous goal of making  the ball bounce  that 

involved using two equations: one to check the condition and one 

to assign the value. 

(Did  they  actually  use  amIHittingASide  to make  their  template? 

This is interesting – a further link in the semiotic chain that allows 

amIHittingGround  and  amIHittingASide  to  substitute  for  one 

another.) 
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and a similarity between the “amIHittingASide” and “gineprasino” 

variable,  led  students  to  duplicate  this  equation’s  structure, 

eliminate any content and use  it as a template to designate what 

happens  to  the  ball’s  colour  when  it  is  below  the  ellipse.  The 

equation to be completed was the “greenColour(ME,t)= ______”, 

which  they  had  used  in  the  past  in  the  form  of 

“greenColour(ME,t)=100”  in order  to give 100 % green  colour  to 

their objects. 

This  leads  them  to  make  use  of  the  provided  equation  as  a 

template. 

?? How did they decide that they should use greenColour(ME,t)? 

(Yes,  they  have  used  in  the  past  to  allocate  green  colour  to  an 

object, but how did  they  come  to use  it at  this point? We need 

more transcript to see this.) 

  To link the first equation which encompassed a new symbol to the 

second  one  which  included  symbols  that  were  in–built  in  the 

MoPiX environment (i.e. the “greenColour”), the students utilized 

the  “gineprasino”  variable  in  a  similar  way  to  the 

“amIHittingASide”,  exploiting  the  fact  that  this  variable  may 

receive two distinct values (1 or 0) according to the ball’s position. 

To  complete  the equation,  students used  two  arithmetic  values, 

the  “0”  and  the  “100”,  to  express  the  percentage  of  the  green 

colour  the  ball  would  contain  in  each  case  (i.e.  the  ball  being 

above or below the ellipse). Thus, the second equation developed 

was  the:  “greenColour(ME,t)=not(gineprasino(ME,t))×0  + 

gineprasino(ME,t)×100”. 

They  may  be  exploiting  the  1/0  truth  function,  but  is  this  a 

deliberate  exploitation  or  just  following  the  pattern  of  the 

template equation? Again we need more  transcript  to  judge  this 

and the use of 0 and 100. 

  The above episode contains many interesting events that indicate 

the  existence  of  a  qualitative  transformation  of  the  students’ 

mathematical  experience  in  reifying  equations,  as  emerged 

through  their  interaction with  the  available  tools.  These  events 

suggest  that  the  students were able  to develop  insights  into  the 

use  of  equations’  formalism  to  create  and  control  animated 

models  as well  as  to  cope  effectively with  structural  aspects  of 

This  analysis  traces  how  the  expression  of  the  students’  goal 

moves from everyday language to MoPiX formalism by identifying 

links in a semiotic chain. 

The  ‘boundary  terms’  –  everyday  words  incorporated  into  the 

names of MoPiX functions/variables play an important role in this 

movement, allowing the selection of relevant equations from the 
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equations,  involved  in  the making  sense of  them as objects  that 

underlie the respective models’ behaviours. 

library to act as templates for creation of the new equations. 

Is  it  significant  to  this  process  that  the  condition  chosen  by  the 

students  –  being  above  or  below  a  given  position  (turn  1)  ‐  is 

similar to that used for hitting the ground? The question by S2  in 

turn 2 “How did you define the plane which is the ground?” seems 

to  play  a  key  role  in  the  construction  of  the  semiotic  chain.  I 

wonder  if  the  same  type  of  process would  have  occurred  if  the 

condition  had  been  dependent  on  a  different  variable,  for 

example, time rather than position. 
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Commentary from IOE perspective on the two analyses of Episode 2 
The episode is of interest as an example of student construction of new equations, extending 
the MoPiX lexicon to allow achievement of a specific goal. As indicated in the summary of 
our theoretical frame above, our reformulation of the common research question for the IOE-
based MoPiX teaching experiment focussed on the ways in which students operated with the 
various modes available to them and the relationships between their semiotic activity and 
mathematical meanings relevant to the educational goals of the teaching experiment. In 
approaching this episode from the ETL teaching experiment we adopt the same focus, though 
in this case the goal is that adopted by the students themselves: the solution of the problem of 
making a ball change colour as it passes another object. The questions we pose are thus: 

What forms of language and other modes do students use to communicate about their 
problem solving? 

How do the semiotic resources used by students contribute to the problem solving 
process? 

As we are looking at a process of development of a solution over time, we adopt the analytic 
approach of tracking the connections between the semiotic resources used as the episode 
progresses, reconstructing a semiotic chain as a means of examining how the everyday 
description of the visual characteristics of the imagined solution is transformed into a set of 
MoPiX equations that will realise that solution. The chain is reconstructed by identifying at 
each step of the episode the source of the semiotic resources used by the students (cf. 
Carreira, Evans, Lerman, & Morgan, 2002). In this episode the sources identified include 
‘everyday’ language (e.g. “the ball is above the ellipse”, mathematical language (e.g. “x, y 
coordinates”), MoPiX formalism (e.g. “gineprasino(ME,t)=y(ME,t)≤274”). These three types 
of source are a priori categories used extensively in the analysis of data arising from the IOE 
experiment. In analysing this episode, we additionally identified what we have called 
‘boundary terms’ such as “ground” which are both part of everyday language and components 
of pre-existing MoPiX terms. Such boundary terms seem important in the formation of the 
semiotic chain, as they are both meaningful in the everyday discourse and functional within 
the MoPiX environment. Indeed, we see the newly formed term “gineprasino” to serve as a 
boundary term that plays a linking role in the transformation of the students’ original vision 
into a functioning MoPiX model. 

Comparing the IOE analysis of this episode with that provided by the ETL team, we note that 
both teams highlight the students’ identification and exploitation of similarities between their 
current goal and previous MoPiX experience with equations including terms such as 
“AmIHittingGround”. The IOE focus on links in a semiotic chain, however, leads to some 
different interpretations. In particular, the construction of the equation 
“gineprasino(ME,t)=y(ME,t)≤274”, seen as surprising in the ETL analysis because of the 
different forms of expression used for the y coordinates of the ball and of the ellipse, is 
explained in the IOE analysis as a close translation of the students’ earlier everyday/ 
mathematical language expression “When the Y is something less than 400, it’s green”. The 
IOE analysis sees structural similarities both between expressions in different semiotic 
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systems and between expressions within the MoPiX system as playing crucial roles in 
enabling the students to move towards the solution of their problem. While the ETL analysis 
also lays importance on links between expressions within MoPiX, in particular the use of 
existing equations as templates for the construction of new ones, it additionally posits the use 
of conceptual similarities between existing and new equations. While not denying the 
possibility of such conceptual connections, the IOE approach does not address them. 

Reflections on the cross-analysis 
Differences in the design of the experimentation have been affected both by differences in the 
theoretical orientations and research interests of the two teams and by differences in the 
global and local contexts within which they were working. It may be seen that key theoretical 
issues guided the design of tasks for each team: for IOE, the provision of a multi-semiotic 
environment and opportunities for communication in a variety of modes; for ETL, the notion 
of half-baked microworld. In both cases the provision of opportunities for exploration, 
collaboration and social interaction among students was also a theoretically informed 
component of the design. 

The cultural and institutional contexts of the two experiments had a strong influence on the 
possibilities available to each research team and underlie the most fundamental differences 
between pedagogical plans of the two teams. The IOE team works within a national context 
that is strongly governed by a tightly defined curriculum, regulated by frequent high-stakes 
examinations. Negotiation of entry into institution in which the experimentation took place 
required a high degree of compliance with the standard curriculum, although development of 
new forms of pedagogy was welcomed. The IOE pedagogical plan thus was designed to focus 
explicitly on agreed topics within the curriculum with educational objectives that could be 
seen by students and teachers to be relevant to success in examinations. In contrast, although 
the broader cultural context within which the ETL team is situated may not encourage 
pedagogical innovation, the team was able to negotiate access to the institution in a way that 
allowed them freedom to design a programme of work independent of specific goals of the 
standard curriculum and, indeed, deliberately by-passing conventional practices. 

MoPiX has potential to be address concepts that lie at the intersection of mathematics, physics 
and engineering. The curricula of different countries define the boundaries and relationships 
between these domains slightly differently. The ETL team report the place of mathematics as 
separate from science or engineering and describe the design of their activities as 
unconventional in bringing together the mathematics of equations with the modelling 
activities of engineering. In contrast, for the IOE team, the standard mathematics curriculum 
includes applications of mathematics, including ‘mechanics’ topics that in other countries are 
considered to be part of physics. This difference in definition of mathematics is reflected in 
the focus of the activities and the research interests. For the ETL team, the focus of their tasks 
was on the construction of models using mathematics and their research interest concerned the 
use of mathematical formalism. In contrast, for the IOE team, the development of the 
concepts of velocity and acceleration was an important curricular objective and, within a 
general research interest in student use of multiple modes of representation, they focussed 
specifically on the ways students represented these concepts. 
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The analytic approaches taken by the two teams are not on the whole incompatible and yield 
interpretations of the data that have some similarities. For example, in analysing episode 1, 
both analyses consider interaction between the symbolic formalism of MoPiX and its 
graphical effects as critical to the problem solving process and identify the student’s final 
inspection of the two sets of equations of the two models as key to his making connections 
between velocity ad acceleration. However, the two teams emphasise different aspects of 
student use of the representations used by students and a significant difference may be 
identified in the two analyses in the ways in which the two teams treat the representations 
offered by MoPiX and the relationships between different systems of representation. For ETL, 
the symbolic formalism of MoPiX plays a particularly important role because of the way that 
it provides access to the ‘deep structure’ of the environment. While the IOE perspective does 
not deny this role of symbolism, it does not play an important part in the IOE analysis. Rather, 
the various systems of representation are considered of equal significance, the interest being 
in analysing what each brings, both individually and in combination, to the possibilities for 
meaning making and problem solving. This difference is highlighted in the interpretations of 
the equation gineprasino(ME,t)=y(ME,t)≤274 in episode 2. Whereas the ETL analysis focuses 
within the symbolism on the different ways in which the value of the y coordinate is 
expressed, the IOE analysis attends to the relationship between the structure of the equation 
and of students’ everyday expression of their goal. 

IV.6. Potential offered for the theoretical landscape 

 How is meaning making perceived? 

The constructionist theoretical framework informs both the original design of MoPiX and the 
pedagogic design and research of the ETL team. However, constructionism is not perceived 
by ETL as an individualistic theory that views the meaning generation process as being 
detached from the students’ interactions with their social environment and as a synonym to 
the cognitive development, achieved merely through the individual’s interactions with the 
given computational tools. This is evident by the fact that ETL chose to use as a key 
theoretical construct for the task and research design, the notion of half-baked microworlds.  

The half-baked microworlds are by nature designed for instrumentalisation since they invite 
the students to deconstruct it, change it and build on its parts, engaging in the way in 
exploration and construction activities, rich in the generation of meanings. However, they are 
also perceived as boundary objects, in the sense that they can convey meaning among of the 
members of the same community, operating as a tool of communication, around which the 
members of the community organise their activities. Bearing in mind this particular aspect, 
ETL designed tasks that allowed students to participate in different social orchestrations 
within their class discussing and sharing artefacts and engage in intrumentalization processes 
in a collaborative context, in different social levels (within their workgroups and within the 
whole class). Thus, the generation of meanings is considered to emerge and shaped both by 
the student’s mathematical activity as they interact with the available tool (the microworld 
and its representations) and their social activity supported the half-baked microworld’s own 
characteristics. 
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From a social semiotic perspective, meaning is not an individual but a social phenomenon, 
created and existing in interaction through the choice and deployment of semiotic resources. 
Possible meanings will depend on the context of the interaction, including the prior 
experience of the individuals involved, as well as the semiotic resources available. However, 
this conception of meaning does not allow direct statements to be made about the cognition of 
individuals or about learning. In order to consider learning it is necessary to define this in 
terms of change in patterns of interaction. 
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V. MaLT cross-case analysis 

V.1. Identification 

ETL – Educational Technology Lab, Education Department, PPP Faculty, University of 
Athens 

IOE – Institute of Education, University of London/ London Knowledge Lab 

V.2. Contextual elements 

ETL context 
The implementation of the familiar MaLT pedagogical plan took place in the computer 
laboratory of a multi-cultural secondary school in Athens (2nd Multicultural school of 
Helliniko) with one 7th grade classroom (13 years olds). The entry to schools for classroom 
research within the typical centralized educational system of Greece is very difficult. Most of 
the researches that have been officially permitted by the Pedagogical Institute (the legal 
organisation that has the responsibility for that) to take place in schools are based on the use 
of questionnaires. Classroom-based research interventions which cause ‘perturbation’ in 
normal educational life are not easily implemented in schools due to the fact that the 
curricular time limits are rather limited.  

At the lower secondary level the teaching of mathematics takes place for four teaching 
sessions (45 minutes) a week. The school time schedule, the content and the curricular goals 
are determined by the National Curriculum. Although computer use for the teaching of 
mathematics is not officially part of the curriculum, the National Curriculum suggests the use 
of particular computational environments (e.g. Cabri, Function Probe) for the teaching of 
specific mathematical topics. However, very few teachers follow these suggestions for two 
main reasons: (a) most of the time computer laboratories are occupied due to the teaching of 
informatics and (b) teacher training for the use of computers in the teaching of mathematics is 
rather limited.  

Due to the above reasons, the use of computers in mathematics is not concerned with the 
normal school practice and thus it can be conceived as an innovation within the Greek 
educational system. As mentioned above, however, the system officially gives space for 
teachers to enrich their lessons with activities in the computer laboratory. In the last years, the 
Ministry of Education, in the frame of a general attempt to introduce a cross-thematic 
approach to learning, has implemented in specific lower secondary education schools, the 
"Flexible Zone" program. The "Flexible Zone" aims at linking horizontally the content of all 
subjects taught in school by introducing a two-hour per week session during which students 
engage in cross-curricular projects and activities. These projects give students the opportunity 
collaborate with their peers through their engagement in exploratory activities, often based on 
the use of computers.  

The school in which the ETL experiment took place had fully integrated the "Flexible Zone" 
in its regular weekly timetable. The access to the school was negotiated through a 
mathematics teacher which we personally knew as she had attended a year before the 
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Mathematics Education postgraduate course at the University of Athens. The teacher brought 
us into contact with the school's head-master who strongly supported the use of digital media 
in the "Flexible Zone" program. Τhis was a usual practice of our team. In order to by-pass 
official or other constraints posed by the educational system we used our personal contacts 
with teachers or head-masters (e.g. PhD candidates, participants in teacher training courses at 
the university) so as to support the implementation of design experiments involving 
innovative uses of computational tools in real classroom settings as a means to generate and 
enhance meaning-making situations.  

The school teacher did not participate in the implementation of the activities in the classroom 
due to other commitments. However, she participated in three preparatory meetings with the 
researchers at the school and contributed to the focus of the activities in relation to students’ 
mathematical background. She also provided information for the students’ performance in 
mathematics and possible difficulties that they might face when engaged in using MaLT.  

The fact that the lesson was part of the "Flexible Zone" allowed the ETL team not emphasise 
on closed ‘didactical goals’ but, rather, attempt to challenge students’ construction of 
meanings for angle when they were introduced with new visual representations of angular 
relationships in 3D space within MaLT.  

Teaching was conducted by a member of the ETL team who acted also as a researcher in the 
classroom. In each session a second teacher – also member of our research team- supported 
data collection acting as co-researcher. The class had totally 18 teaching sessions over two 
months. Each session took place in the computer laboratory of the school. This room was 
equipped with PCs around the periphery where students sat around tables working in groups.  

IOE context 
The IOE (alien) teaching experiment with MaLT took place in a voluntary aided Church of 
England secondary school in South London. Although located in a middle class 
neighbourhood, the school population is drawn from a much wider area and includes a 
significant proportion of students from low-income families and with African and African-
Caribbean backgrounds. The school was only opened a few years ago and at the time of the 
teaching experiment contained pupils in Years 7-11 only (aged 11-16 years). As a new school, 
it is well equipped with computers, both laptops for use in ordinary classrooms and desktop 
PCs located in laboratories. However, the mathematics department does not habitually make 
use of these facilities. The school ethos is ‘traditional’, with a strong emphasis on academic 
achievement and tightly constrained student behaviour. Within the mathematics department, 
the dominant form of pedagogy is teacher-led, using the ‘three-part lesson’ structure 
recommended by the National Strategy (DfES, 2001). 

Entry into the school was negotiated through contact with the Head of the Mathematics 
Department, a graduate of the Masters programme in Mathematics Education at the IOE, and 
another member of the mathematics teaching staff (GD) who had attended research seminars 
in mathematics education. These members of school staff gained permission from the 
Headteacher of the school, who was happy to be involved with a university-led project and to 
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be seen to encourage innovation. A condition of this permission, however, was that the 
teaching experiment should not prejudice student performance in national tests. This 
condition had two effects on the conduct of the teaching experiment. First, the pedagogical 
plan had to be designed to match the official curriculum. Second, the class chosen to take part 
was a ‘low set’ that was not expected to do well in the national tests. Each year group in the 
school was divided into teaching ‘sets’ according to their performance in previous years. 
Although studying the same National Curriculum, ‘lower’ sets may be expected to cover less 
material in less depth.  

The class included 24 Year 8 students (aged 12-13). As set 4 out of 5 in their year group, their 
levels of attainment were significantly below average. Students from lower income families 
and non-white backgrounds were over-represented in the class, relative to their numbers in the 
school as a whole. Their experience of school may be described as marginalised as they were 
seen by teachers, by other students and by themselves as unable to achieve the academic 
standards valued in the school. As marginalised members of the community, the behaviour of 
many members of the class was also non-conformist. Most were poorly motivated and 
displayed a high degree of off-task and, in some cases, disruptive behaviour. The class 
teacher’s usual pedagogy was strongly framed, allowing little space for students to deviate 
from set tasks or to interact with each other. Her classroom was normally arranged with tables 
arranged so that students could sit in pairs facing the front of the room. For the parts of the 
teaching experiment that took place in her classroom, these tables were rearranged to allow 
groups of 4-6 students to work together. This way of working was unfamiliar to students 
within mathematics lessons and needed frequent intervention to enable constructive 
interactions to take place. The parts of the teaching experiment involving use of MaLT were 
located in a computer laboratory with sufficient PCs for every student. Although we wished 
students to work in pairs with MaLT, their prior experience of being in the computer 
laboratory (mostly for IT lessons) had involved only individual work and they preferred to 
work individually, resisting attempts to get them to share PCs. 

The class teacher was keen to participate in the project, recognising that this was a substantial 
innovation compared to her usual practice. She participated in the planning and played a role 
in team teaching during the implementation. A student teacher, who was undertaking a work 
placement in the school, also participated in team teaching, together with two IOE researchers 
who both acted as teachers and gathered data. 

The pedagogical plan was shaped by the official curriculum and by reflection on what might 
motivate both the students and the teachers involved as well as by the interests of the IOE 
research team. It was decided to set it in the context of a project contextualised by a ‘real 
problem’, partly because it was felt that this would be of interest to the students and partly 
because this type of project is an officially recommended approach to teaching students of this 
age in the UK. In order to ‘cover’ the official curriculum it was necessary to include paper-
and-pencil work as well as work with MaLT. The time allocated to 3D topics within the 
official curriculum was less than we required for the project. The class teacher agreed to be 
somewhat flexible in her following of the school’s scheme of work and also arranged two 
after school sessions additional to normal classes.  
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NKUA/ETL IoE/LKL 

Secondary school 

  

 

Secondary school (Church of England) 

1 class of 20 students  

 

1 class of 24 students (low attaining) 

7th grade pupils, 13 years old Year 8 students, (12-13 years old) 

Workgroups of 2, each with a Tablet PC a) groups of 4-6 students in the 
normal classroom 

b) individuals, each with a PC, in a 
computer laboratory 

18 teaching sessions, 2 months  9 teaching sessions, 2 weeks (4 sessions 
using MaLT in the computer laboratory) 

Interactions within and between 
workgroups 

Interactions within and between 
workgroups 

One ETL researcher as experimenting 
teacher (responsibility of the lesson), a 
second researcher supporting data 
collection (co-researcher)  

 

Team teaching involving class teacher, 
student teacher and two IOE researchers. 

Table 1: Comparison of contextual elements. 

V.3. Theoretical frames 

ETL theoretical frame 
The main theoretical frame adopted by the ETL team is constructionism (Papert, 1980, Harel 
and Papert, 1991, Kafai and Resnick, 1996). Based on this theoretical origin we draw on the 
idea of teaching and learning mathematics with the use of technology with learners as central 
sense-making agents while interacting with specially designed exploratory computational 
tools and representations viewed as integral to mathematical activity rather than an external 
aid to internal cognitive processes. The constructionist framework expects students to interact 
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with and manipulate the representations provided by the tool, making sense of their 
behaviours through this interaction with the computer environment and with the social context 
of the classroom. MaLT is a microworld environment for geometrical constructions which is 
designed to provide multiple linked representations by combining symbolic notation -through 
a specially designed version of Logo- with dynamic manipulation of graphically represented 
mathematical objects.  

In designing the pedagogical plan and the teaching experiment we took into account Papert’s 
view (1980) that learning environments based on the use of dynamic digital tools are much 
richer in opportunities for generating meanings. We intended to move in the direction of 
identifying tools and tasks to facilitate students’ meaningful engagement in exploring the 
angle embedded in simulations of familiar situations in 3D space. The constructionist 
theoretical perspective of the MaLT pedagogical plan was based on the assumption that 
programmable geometrical constructions designed to help children abstract the notion of turtle 
movement in the 3D space provide a useful environment for developing their 
conceptualizations of geometrical objects in 3D space, like angles.  

Thus, the wording of our reformulation of the Common Research Question by our team 
specified the priority of the student’s engagement in experimenting with the available tools by 
introducing a distinction between the term ‘representations’ (which existed in the general 
form of the CRQ) with the students’ use of representations:   

How do student use the available representations in MaLT to construct meanings for the 
concept of angle in 3D space 

- as a geometric shape, i.e. formed between two geometrical objects which can be 
segments in 2D geometrical figures (e.g. rectangles) or 2D geometrical figures in the 
3D space (e.g. dihedral angles); 

- as a dynamic amount, indicating a change of directions which can also be represented 
by a variable; 

- as a measure represented by a number.  

Under a constructionist perspective, the phrase “to construct meanings” indicates the dialectic 
relationship between action and meaning implying that within the activities students were 
expected to experiment with different strategies and, more importantly, attach personal 
meanings to the results of their activities. In this view, computational tools provide a system 
through which mathematics can be expressed. Thus, they orient students toward a 
mathematical perspective which can be traced when students use them to develop an explicit 
appreciation of relations (i.e. the relational invariants) and their semantics (i.e. the meanings). 
The multiplicity of roles that tools play suggests a detailed analysis of student’s thinking-in-
change in order to capture the subtle shifts in meaning generation and how these might have 
been mediated by the use of the available tools. 

In analysing students’ mathematical thinking we were interested to capture the ways in which 
the students interacted with the available representations and the ways in which the meanings 
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they constructed structured and were structured by them. This is what the notion of situated 
abstraction (Noss & Hoyles, 1996) seeks to address, i.e. to describe how learners construct 
mathematical ideas drawn on the linguistic and conceptual resources available for expressing 
them in a particular computational setting as well as the ways in which learners exploit the 
available tools to move the focus of their attention onto new objects and relationships. Yet, 
from a social constructivist perspective, psychological and social aspects of learning can 
never be considered separately and the term situated abstraction captures the synergy between 
them: student’s activity within a community (Lave & Wenger, 1991) both shapes and is 
shaped by their interaction with the available tools and those around them. The idea is that 
students could web their own thinking by communicating with and through the tools of the 
microworld and shaping them to fit their own purposes, including the need to communicate 
with others. In our view, situated abstraction can be seen as a complementary –physical and 
intellectual- context providing new meanings, new resources for the learners to (re)think-in-
progress while exploiting the available tools to move the focus of their attention onto new 
objects and relationships.  

Angles are critical to 3D geometrical knowledge and since they are related to students’ 
everyday experience they can be considered as a rich domain for mathematics meaning-
making, not systematically studied up to now. It is also clear from previous research that 
students have great difficulty in coordinating the various facets of the angle embedded in 
various physical angle contexts involving slopes, turns, intersections, corners, bends, 
directions and openings (Mitchelmore & White, 1998). Taking this into account Mitchelmore 
and White (2000) highlight that a mature abstract angle concept depends essentially on 
learning to link the various physical angle contexts together through “the systematic attempt 
to investigate our spatial environment mathematically” (p. 233). Indeed, the teaching of 3D 
geometrical concepts is an area of mathematics in which students' informal ways of 
experiencing the physical 3D space around them are excluded by the teaching approaches in 
the school. In activities involved in the familiar pedagogical plan provides students with 
challenges to construct, transform and animate 3D geometrical objects often encountered in 
everyday physical angle situations – such as doors and revolving doors. For example, in a 
‘door’ simulation the arms of the defined dihedral angle are rectangles while in a ‘spiral 
staircase’ simulation the arms of the defined angle are an equilateral triangle and a rectangle. 
Thus, the tasks are designed to integrate different angle domains (e.g. intersecting, turning, 
sloping) related to physical angle experiences in everyday circumstances (e. g. corner, slope 
and turn) as well as to the main definitions of angle.  

In considering specific mathematical aspects of students’ activities at the level of design and 
analysis our research perspective was also informed by the theoretical construct of conceptual 
field (Vergnaud, 1990). In the light of this construct, it makes no sense to perceive angle in 
3D space as a mathematical notion on its own but rather it is more useful to consider it in 
terms of the concepts interrelated with it, the situations in which it may be used and the 
available representations. For instance, a concept tightly related to angle in 3D space is that of 
a turn, a situation in which it may be used can be a situation evoked by a given task (e.g. an 
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opening-closing door simulation) while the available representations can be based on the use 
of paper and pencil or on the use of computational tools.  

IOE theoretical frame 
The primary theoretical framework adopted by the IOE team involved in the teaching 
experiment is multimodal social semiotics (Kress, Jewitt, Ogborn, & Tsatsarelis, 2001; Kress 
& van Leeuwen, 2001; O'Halloran, 2005). This informed the design the teaching experiment 
and the analysis of its results. Although originating in linguistics, this theoretical framework 
challenges the primacy of language as a means of communication and meaning making, 
highlighting the different potentials for meaning offered by different modes of 
communication. Multi-modal and multi-semiotic environments allow participants many 
opportunities for making meanings with the representations available to them and choices 
about the most apt representations to employ in order to communicate their desired meanings.  

In designing the pedagogical plan we saw MaLT as an environment in which students could 
experience new kinds of representation of 3D objects. 3D geometry is an area of the 
curriculum that appears difficult both to learn and to teach. 2D representations of 3D objects 
are frequently used in order to support analysis of their geometrical features, yet the success 
of this approach relies on students' ability to make connections between the different 
representations. In practice, the focus of the UK curriculum is often more on developing skills 
in constructing particular type of 2D representations rather than on using them in order to 
develop understanding of the 3D objects themselves. We aimed therefore to engage students 
in using a range of representations purposefully and making connections between them in 
order to gain a fuller understanding of 3D geometrical objects. The pedagogic plan took the 
form of a project based on a 'real world' context that would also have meaning for students 
within discourses from outside the classroom. They would thus be likely to draw on everyday 
discourses and forms of representation as well as on the formal mathematical discourses and 
representations encountered in the classroom. This was designed to provide opportunities for 
them to form links between these discourses, enabling sense to be made of the representations 
that are new to them. We understand such links between different domains of activity 
(sometimes referred to as 'transfer') to occur through the formation of chains of signification, 
where similar signifiers are encountered in different discourses (Carreira, et al, 2002).  

Through the course of the set of activities, it was intended that students would make use of a 
range of semiotic systems, both paper-based and in MaLT, visual and symbolic, with different 
elements and grammars. Each of these semiotic systems has a different meaning potential 
(O'Halloran, 2005; Kress, 2001). Thus making use of one of the systems, for example, 
isometric drawings, offers a particular set of opportunities for developing understandings of 
the properties of 3D shapes, while another, such as nets, offers different opportunities. The 
symbolic logo-based programming of MaLT provides a further semiotic system that makes 
more explicit use of angle and length relationships within figures than most paper and pencil 
based systems.  

The juxtaposition of multiple semiotic systems thus provides a rich environment for 
developing understanding of 3D geometrical objects. Operating separately with the systems 
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ensures that students encounter different aspects of the properties of such objects. Most 
importantly, however, operating with more than one system provides important opportunities 
for developing a fuller understanding of these properties and of the relationships between 
them. In considering specifically mathematical aspects of multimodality, we refer to Duval 
(2006), who argues (from a different semiotic tradition) that conversion between semiotic 
systems (which he names representational systems or 'registers') is of fundamental importance 
to mathematical learning. Conversion demands that the student distinguishes what is 
mathematically relevant in each system and separates the mathematical object from its 
representation. The computational environment provided by MaLT not only juxtaposes 
different semiotic systems for representation of 3D objects but also, by making one system 
depend on another, seems likely to facilitate 'conversion' and consequent abstraction of 
mathematical properties. It not only demands that students engage in using different forms of 
representation for the 'same' mathematical object but also that they actively use the 
representations provided by the Logo symbolic programming and by the dynamic variation 
tools to effect changes in the visual form of 3D representation in the turtle screen. In the 
opposite direction, the process of 'debugging' faulty 3D figures again demands conversion: 
identifying those parts of a Logo script responsible for the 'buggy' behaviour. According to 
Duval’s principle, we hypothesised that activities in this environment would enable students 
to develop their understandings of the properties of 3D shapes. This hypothesis, however, did 
not form a focus for our research as our overarching social semiotic perspective directed our 
attention to communication and meaning making in social contexts rather than to 
investigation of individual cognitive development. 

Social semiotic analysis of communication is not concerned with the cognition underpinning 
the communication or with the intentions of those involved but with the meanings produced in 
the social interaction. Our reformulation of the common research question thus focussed on 
the ways in which students operated with the various modes available to them and the 
relationships between their semiotic activity and mathematical meanings relevant to the 
educational goals of the teaching experiment: 

 What meanings do students make in relation to three dimensional geometry through 
their semiotic activity in the context of working with MachineLab and other modes? 

 What relationships are there between procedures students write or changes they make 
to given procedures and the properties of the shapes they are working with? 

 How do students use the variation tool and for what purpose? 

 What interpretations do students make of the effects of using the variation tool? 

 What choices do students make between and within semiotic systems in order to 
communicate their completed design to their peers? To what extent and in which ways 
are the properties of shapes represented? 
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 To what extent are students’ constructions in different semiotic systems consistent with 
one another? In particular, are representations of properties of shapes consistent in 
different systems? 

The data collected and the methods of analysis also reflected this perspective, drawing 
together student productions in different modes (paper-and-pencil, MaLT, speech, gesture) 
and tracing both the meanings produced through each mode of communication and the 
interactions between modes. 

V.4. Comparison of didactical functionalities 

Differences in the educational goals of the two teaching experiments, the different contexts of 
implementation –based on different didactic cultures- and in their theoretical frameworks led 
the two research teams to focus on different sets of didactical functionalities (see Table 2). 
The one aspect that was clearly significant for both teams was related to the interpretation and 
use of the two new kinds of turtle turns in MaLT (uppitch/downpitch, leftroll/rightroll) which 
are strongly related with the passage from one plane to another in 3D space. This 
characteristic of the DDA was salient for both teams and seemed to serve a similar function 
for both in relation to students making sense of (a) angle as a turn indicating both the act of 
body turning and the result of it, which inevitably involves directionality (dynamic scheme) 
and (b) angle as a turn represented by a number (measure scheme).  

The other didactical functionalities highlighted by the ETL teaching experiment focus on the 
role of specific representations provided by MaLT and their role in students’ conceptual 
understanding and struggles in making sense of angle in 3D space indicating the potential of 
them for expressing and reflecting on the mathematical nature of angle as a spatial 
visualisation concept. 

Students’ experience with MaLT in the IOE teaching experiment was limited both by the time 
constraints of the official curriculum and by the students’ own insecure prior knowledge of 
angle. The major focus of their work was thus the struggle to make sense of and use the Logo 
language and to relate it on the one hand to the representation in the turtle screen and on the 
other to their physical experience of 3d space. 

 characteristics of 
the DDA 

educational goals modalities of use 

Both IOE and 
ETL 

The new 
commands of turtle 
turns and the 
visualisation of the 
turtle while 
executing them.  

 

The new kinds of turtle turns 
allowed students get acquaint 
with the navigation of the turtle 
in 3D geometrical space of 
MaLT environment.  

 

 

The navigation of the turtle in 
3D space facilitated students’ 
engagement in  

(a) using gestures and/or 
objects to make sense of the 
turtle’s move/turning in 3D 
space 

(b) linking the concept of angle 
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as a turn with particular 
measure and that of angle as a 
slope 

(b) oscillating between 
different frames of reference 
for interpreting the 
move/turning of the turtle in 3D 
space.  

ETL The use of 
dynamic 
manipulation tools 
of MaLT support a 
conception of 
angle as dynamic 
spatial concept 
based on turn and 
directionality.  

 

The dynamic manipulation 
with the use of the Uni-
dimensional Variation Tool 
(1dVT) provided students with 
an alternative representation, 
enabling a new approach to 
angle in 3D space based on the 
innovative use of familiar 
mathematical representations 
(e.g. number line).  

The dynamic manipulation of 
variables allowed students to 
construct meanings for angle as 
dynamic entity for moving in 
different planes. This was also 
facilitated the investigation of 
the role of 2D representations 
(i.e. 2D geometrical figures) in 
forming angular relationships 
in 3D space mainly through the 
simulation of 3D objects that 
involve turning (e.g. door).  

ETL  The graphical 
representation of 
geometrical objects 
can challenge 
students’ 
conceptions of the 
conventions used 
to represent 3D 
object in the 
computer screen.  

  

Challenge pupils to move the 
focus of their attention from 
directed turns between lines to 
directed turns between planes 
defined by geometrical figures. 

 

 

However, students’ 
investigations were affected by 
the interaction with the other 
representations available. 
Specifically, (a) symbolic 
notation provided a basis for 
identifying the role of variables 
in generating specific 
simulations involving 
continuous turning and (b) 
dynamic manipulation through 
the use of the 1dVT enabled the 
dynamic move of a geometrical 
object in 3D space and thus the 
observation of it from different 
perspectives.  
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IOE Symbolic 
representation in 
the Logo editor. 

The need to provide a set of 
formal instructions to construct 
a 3D figure is intended direct 
attention to the formal 
properties of the figure (angles 
and lengths) and relatinships 
between different parts of a 
figure. 

In practice we found that 
students were reluctant to adopt 
an analytical approach, 
preferring to either use pre-
formulated sets of commands 
or to use trial and error. A 
common strategy to find the 
required turtle turn was to enter 
a turn command and then 
pressing the Insert key 
repeatedly until the turtle 
appeared to be in the correct 
position. 

Table 2: Didactical Functionalities. 

V.5. Results of the cross-case analysis together with illustrative 
examples 

In the context of the cross-analysis we have chosen to provide feedback on the designed 
pedagogical plans by addressing contextual issues as the IOE team designed a different 
pedagogical plan to fit its cultural context but incorporated tasks based on those developed by 
the ETL team. As far as the analysis is concerned we will attempt to provide converging 
interpretations of students’ behaviors in both experiments.  

Inside-outside the Turtle Scene and the use of gestures  

ETL analysis  

The issue ‘inside-outside the TS’ emerged for the ETL team as one aspect of the analysis 
concerning the student’s learning trajectories and potential difficulties in coordinating 
different aspects of the concept of angle when navigating the turtle in 3d space. ETL 
researchers were interested to explore the role of the body-syntonic metaphor in students’ use 
of the available representations in MaLT as well as its influence on the students’ construction 
of meanings for angle in 3d space.  

The ETL team divided the activity sequence in two phases and developed for each one of 
them a strand of two tasks. After a short familiarisation phase with the basic Logo commands, 
in task 1 of the phase 1 students were asked to move the turtle in the right and left corner of 
the 3d TS and then to bring it back at its initial position. It was not specified on purpose what 
was meant by ‘the left and right corner’, so as to leave students to explore 3d space and 
develop their own navigation strategies.  

During their engagement with task 1, most of the pupils seemed to prefer to work exclusively 
on the horizontal plane indicating the initial position of the turtle, which was conceived by the 
students as the ‘ground plane’ (although it is actually a horizontal one parallel to the ‘flagged 
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plane’ visualised at the bottom of the scene). Despite the researcher’s request to navigate the 
turtle at different corners of the 3d scene, most of the students have chosen to move the turtle 
on the ‘ground plane’ so as to construct either simple crooked lines or familiar geometrical 
figures such as rectangles. At this stage of their work students seemed to image that they were 
‘inside’ the scene driving the turtle in a body-syntonic way by projecting the orientation of 
their trunk to the orientation to the turtle. In other words, students seemed to work as if they 
were inside a ‘room’ navigating the turtle to design geometrical figures ‘on the floor’. Pupils’ 
experimentation concerning the notion of angle in this phase was developed around how to 
find out the measure of turtle turns for the construction of 2d figures without an explicit 
reference to the changes of planes, let alone how these might be related to the available 
commands.  

Students’ move in other different planes of MaLT appeared during the implementation of the 
next task of the phase 1 according to which students were asked to simulate the take-off and 
landing of an aircraft. This task seemed to have provided a more fruitful context for the 
experimentation of students with both new types of turtle turns involving also angle as a 
slope, an aspect of angle difficultly recognised by students as the one supporting edge is 
missing (Mitchelmore & White, 2000). The analysis at this phase signalled pupils’ shift from 
driving the turtle inside the TS (i.e. to move on a specific 2d plane) to viewing the turtle from 
a distance (i.e. outside the TS) and drive it according to different frames of reference each 
time. More particularly, the findings revealed indications that sometimes students followed 
contradicted frames of reference, focusing for example on the angles drawn in relation to the 
line of the horizon as visualised in the TS rather than in relation to the previous position of the 
turtle, as it was the case. 

This is evident in the following example which reveals students’ confusion over the way in 
which the commands up(45) and lt(50) affected/determined the generated graphical outcome 
visualized in Figure 1. These students (group A) were reflecting upon the commands given to 
the turtle so as to explain why the aircraft collided to the ground. 

Researcher:  Hey, nice take off!! I see you hit the ground! 

Student:  Look there is a slope up(45) and then a slope of lt(50). 

 

 

fd(5)  

rt(90) 

fd(2)  

up(45)  

fd(5)  

lt(50) 
Figure  1:  Simulating  the 
taking‐off  and  flying  of  an 
aircraft. 
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It seems that they focus in both cases to the angles 
drawn in relation to the line of horizon and not in 
relation to the previous position of the turtle, as it is 
the case. A more detailed analysis of pupil’s 
interactions revealed that students oscillated 
between two different frames of reference:  

 

(a) world frame: defined in terms of directions ‘up’ and ‘down’ and  

(b) a vehicle frame: typically associated with the orientation of a moving entity, here the 
turtle.  

Though at the initial position of the turtle the ‘vehicle’ frame of reference coincides with the 
‘world’ frame of reference the use of roll turns might result to contradict one another. In the 
initial ‘take-off’ of the turtle the ‘vehicle’ frame of reference coincides with the ‘world’ frame 
of reference. In other words, the ‘up’ in relation to the turtle’s position coincides with the ‘up’ 
of the simulated 3d space. Then and especially after the command lr(30) the two frames 
contradict one another. However, the students – possibly by drawing upon their everyday 
experiences - seemed to consider the horizontal ground plane and the directions of up and 
down as fixed. This may be a possible explanation of their insistence to use the up command 
in order to get height regardless of the opposite graphical outcome. Thus, ETL team argues 
that although 3d simulated space is closer to real life and every-day experiences, the body-
syntonic frame which is inextricably linked with the 'world' frame in real 3d space, should be 
shrunk in favour of the ‘vehicle frame’ underlying the turtle move in the 3d space. 

In this context, the ETL analysis revealed that one aspect underlying students’ bodily 
engagement with the tasks was related to the students' informal or spontaneous use of 
gestures. It constitutes one aspect of the ETL analysis which emerged as a coherent part of the 
students’ construction of meanings for angle in 3d space interrelated with their attempts to 
describe the turtle’s navigation in 3d space as well as to conceptualise the role of 2d 
representations in forming angular relationships in 3d space. In the next episode the students’ 
use of gestures appears as part of their struggle to understand the ways by which the 
combination of the new turning commands could affect the manipulation of a 2d geometrical 
figure so as to construct the simulation of a door. We note that the episode took place before 
students were asked by the researchers to experiment with the door simulation which 
constitutes one activity of the ETL pedagogical plan.  

Initially group B constructed a rectangle with three variables on the ‘ground plane’ (Table 3, 
Procedure 1). Having recognised the way in which the up(90) command affected the position 
and the orientation of the turtle, they inserted the command up(90) at the beginning of the 
respective procedure and constructed the same rectangle on the ‘screen plane’ which -in 
mathematical terms- is perpendicular to the ‘ground plane’ (Table 3, Procedure 2).  

 

fd(6)  

rr(30) 

up(45)  

fd(8) 

fd(5) 
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to rect :a :b :c 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

end 

to rect :a :b :c 

up(90) 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

end 

to rect :a :b :c :d 

up(:d) 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

fd(:a) 

rt(:c) 

fd(:b) 

rt(:c) 

end 

Procedure1 Procedure 2 Procedure 3 

Table 3: Logo procedures for the construction of a rectangle in TS 
(Group B). 

When trying to concretise the new position of the rectangle in 3d space one students (S2) used 
her hands so as to mimic the movement of the turtle from the surface to the ‘screen plane’ 
(Figure 2).  

R: What happened to the turtle with up(90)?  

S2: [Showing with her hand the move from the surface to the screen 
plane] It [i.e. the turtle] took it [i.e. the rectangle] that way.  

R: If we didn’t put 90 but put 45, what would have happened?  

S2: It [i.e. the rectangle] would be nearly in the middle.  

R: If we put 50;  

S2: Ok, not in the middle. [Showing with her hand] A bit more than that.  

The dynamic character of student’s bodily engagement in the simulation challenged both of 
them to try to visualize it on the screen.  

So, S1 afterwards had the idea to replace the value 90 in the command 
up(90) with a new variable :d to see what would happen (Procedure 3). 
Dragging on the slider of the variable (:d) in 1dVT had the effect of 
the figure dynamically moving upwards – downwards visualising in 
that way the dynamic move of the rectangle in different planes as well 
as the preceding uppitch-downpitch gestures made by S2 (Figure 3).  

S1: [Moving the slider (:d)] Look! If we move it [i.e. the slider (:d)] 
upwards it [i.e. the rectangle] raises ... If we move it [i.e. the slider] downwards it [i.e. 
the rectangle] descends.  

 
Figure 2 

 
Figure 3 
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This episode indicates the conceptualisation of angle as a dynamic entity interrelated with the 
move to the different planes in the 3d space and the simultaneous visualisation of this move 
‘inside’ the TS. This kind of activity appeared to provide a fruitful domain that challenged 
student’s intuitions and ideas about angle as a spatial quantity come into play interrelated with 
a dynamic passage from one plane to another.  

In the evolution of the episode the students had the idea to insert in the procedure a roll 
command so as to simulate the continuous move of a door. The sequence of what happened 
next is as follows. Initially one of the students substituted the command up(:d) (Procedure 3) 
with one of the roll commands (rr :d). Moving the slider (:d) then she realized that the 
direction of the axis of rotation was perpendicular to the screen plane (‘it turns as a wheel’ she 
said) (Figure 4, on the left). 

 

 

 

Figure 4 

At his phase students continued to ‘play turtle’ to identify the type and the sequence of the 
turtle turns which would result in the desired simulation. In doing so, they faced difficulties in 
imagining -and thus mimicking- in which way the turtle ‘moves’ the rectangle in different 
positions and directions in 3d space. So, they found efficient to rehearse the move of the 
rectangle with the use of a concrete 3d object, in this case a video cassette, so as to visualise 
the change of planes of the rectangle as a result of the change of the initial position of the 
turtle in 3d space (Figure 4, in the middle). So, students realized that initially the rectangle 
needs to be raised up and then turned (‘rolled’) on the right. Modifying accordingly the 
Procedure 3 students used one more variable in the command rr(:e) that was inserted after the 
initial command up(:d). They subsequently achieved to simulate the ‘opening-closing’ door 
(Figure 4, on the right) by dragging the slider (:e) on the 1dVT after selecting the value 90 for 
the slider (:d).  

S1: We changed this roll. When we put it [i. e. the roll command] at the beginning [i. e. of the 
Procedure 3] it [i. e. the rectangle] moves like that [Shows with the cassette the move of the 
left Figure 5]. So, initially we put it [i.e. the rectangle] in the vertical position. 

We can see a dynamic aspect in students’ bodily engagement in the episode. While they are to 
some extent ‘playing turtle’ with the use of hands and/or the cassette, they define the dynamic 
manipulation of the rectangle by using position and heading of the turtle which seems to 
‘coincide’ with the rectangle (i.e. the turtle appears in some way to ‘carry’ the rectangle). The 
use of the turn and pitch/roll gestures in the above episode supported students’ move into 
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experimenting further with the use variables to represent geometrical objects and the dynamic 
manipulation of them with the 1dVT.  

IOE analysis  

As the IOE team started to view the video data collected during use of MaLT, it was 
noticeable that the teachers and researchers made extensive use of gestures in an apparent 
attempt to support students’ planning and execution of constructions in MaLT. One 
significant type of gesture was a set of stereotyped hand and/or arm 
movements, often associated with use of the terms turn, pitch (or 
more frequently up or down) and roll and the associated Logo 
instructions (see Figure 5 for the codes used in transcription of these 
gestures). This set of gestures constitutes a new semiotic system, 
linked with, but not identical to, both the linguistic description of 
three-dimensional movement and the symbolic system of Logo. 
Students also made use of these and other gestures to support their 
communication about turtle movement. We became interested in 
students’ adoption of these new signs and in the relationships 
between the semiotic activity of teachers and researchers and that of 
the students. 

For the teachers and researchers, using these gestures as ways of 
thinking and communicating about movement of the turtle within 
MaLT seemed a natural consequence of our experience with using 
two-dimensional versions of Logo. The metaphor of ‘playing turtle’, 
an operationalisation of body syntonicity, formed part of our experience of ‘Logo culture’ and 
constituted for us a more or less implicit theory about learning with Logo.  

In the 3D context, it is not possible to physically act out turtle movements with the whole 
body. Instead, the hand (or a toy aeroplane held in the hand) substitutes for the body. In 
planning the introduction to MaLT for the London students, we adopted an initial activity 
similar to that used by the ETL team, using a model aeroplane to simulate a ‘take-off’ path 
and then using 3D Logo commands to reproduce this path in MaLT. In doing so, we found 
that the turns of the model plane held in a hand became transformed into the set of hand 
gestures described above. These gestures became incorporated into our further 
communications about three-dimensional movement throughout the teaching experiment, both 
spontaneously and as part of deliberate attempts to encourage students to associate a sense of 
their bodily movement with the Logo symbolism. 

We now briefly present two episodes from the teaching experiment in which the teachers and 
researchers modelled use of gestures to ‘play turtle’. Then we present in more detail an 
analysis of a third episode of a student’s use of similar gestures.  

Episode 1: 

Figure5: MaLT gesture codes. 
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In the introductory session with MaLT, one of the research team introduced the notion of 
turtle movement using a toy aeroplane. Holding the aeroplane in her hand, she asked students 
to instruct her how to move her hand in order to simulate the plane taking off. As she 
followed the students’ instructions, she accompanied the physical movement of the 
hand/aeroplane with a verbal description, using and stressing the terms pitch, roll and turn in 
synchrony with the associated gestures.  

Episode 2: 

In a later lesson, recognising that some students were still having difficulty distinguishing 
between these different kinds of turn, the class teacher used her arm and hand to act out the 
role of the turtle drawing a ‘door’ under instruction from the class while a researcher entered 
the Logo instructions into a computer, displaying the resulting turtle path on a 
large screen. The teacher was careful to follow the conventions of the gesture 
system in order to emphasise the relative nature of turtle movement. Thus, for 
example, she turned her hand in a down pitch gesture when given the 
instruction to go down, even though this resulted in her hand pointing 
horizontally as in Figure 2. This resulted in conflict for students between their 
intended outcome and the visual feedback provided, leading to rapid self-
correction of the Logo instructions. 

Episode 3: 

Student T, having constructed one rectangular wall, was trying to construct a second wall 
perpendicular to the first. She explained what she was trying to draw using language and 
gesture. Her words are shown in Table 1, together with a verbal description and a sketch of 
the accompanying gesture. 

1 here whole rt arm vertical P0, palm facing away from 
body, moves up in direction of fingers 

 

2 turn here TR, arm moved in direction of fingers 
(maintaining TR position) 

 

3 turn here attempt to move rt hand TR again (too difficult?)  

4  switch to lt hand, arm horizontal pointing rt, hand 
PDN (fingers pointing down) 

 

5 turn here moves forearm clockwise, hand still PDN (fingers 
pointing left) 

 

6 but I want it 
to come 

turns arm (awkwardly) so that, hand still in PDN 
position, fingers point towards body 

 

Figure 6: down 
pitch. 
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Table 4: T imagines a wall. 

The switch (lines 3 - 4) between use of right and left hands appears to be a response to 
the physical difficulty of achieving the desired position with the right hand (see Figure 7).  

We consider what remains the same and what is 
changed with this switch of hand. The switch 
allows T to maintain the direction in which the 
fingers are pointing (down). This may be taken to 
represent the turtle heading within the vertical 
plane parallel to the screen. However, in 
switching arms, she changes the relationship 
between arm and hand from a turn gesture to a 
pitch gesture. We use turn and pitch within the 
conventions set up by the teachers/ researchers 
and the Logo language, not to suggest that T 

associates her gestures with these terms. On the contrary, she does not appear to attach any 
significance to the distinction, focusing solely on the position of her hand and the direction in 
which her fingers are pointing in order to describe the intended turtle movement. While she is 
to some extent ‘playing turtle’ with her hand, she is defining the turtle’s movements by using 
position and heading at the corners of her imaginary wall rather than by using turn and 
distance as required by the Logo language. The use of the turn and pitch gestures is thus not 
supporting her move into using Logo code and may indeed have made her communication 
with teachers/researchers less effective. 

In considering the difference between the ways in which teachers/researchers and students 
were using the ‘same’ gestures, we distinguish between the two notions of imaging and 
imagining. We define imaging as using gesture to create an image of the construction of the 
turtle path. The movement of the hand mimics the movement of the turtle: the forearm is held 
parallel to the current heading of the turtle and the hand is moved to define the next heading. 
Thus, as in Figure 8, the gesture indicating ‘up pitch’ is always relative to the current heading 
of the turtle. In both episodes 1 and 2, the teacher/researcher gestures were imaging the 
process of construction of the turtle path. 

 

Figure 8: All these gestures indicate ‘up pitch’. 

forward 

 
Figure 7: T switches hands. 
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In contrast, in episode 3 student T used apparently similar hand movements to 
construct very different meanings. For her, the relationship between forearm 
and hand did not appear to have significance, as she was willing to substitute a 
pitch down gesture with her left hand for a turn right gesture with her right 
hand. We characterise her use of gesture as imagining, referring to her mental 
image of the desired outcome of turtle drawing. In this episode, as in several 
other episodes of student gesture within the data set, the gesture indicates the 
desired direction of movement in order to draw the desired outcome, rather than 
indicating the required type of turn. Thus, for example, a movement in the ‘up’ 
direction (within the plane of the screen) might be indicated by use of the spoken word “up” 
and a ‘down pitch’ gesture (Figure 9). 

Teachers and researchers used specialised hand gestures to communicate with students about 
three-dimensional movement. Students used the ‘same’ gestures but to communicate different 
meanings in relation to turtle movement. Whereas the imaging by teachers/researchers 
mimicked turtle movement in a kind of ‘playing turtle’ action, student use of gesture to 
imagine the outcome of the movement seems closer to deixis, pointing in the direction of 
movement from a viewpoint outside the turtle. Indeed, one student explicitly refused to accept 
the ‘playing turtle’ metaphor offered to her by a researcher: 

JA if you imagine yourself as a turtle, how are you going to move? 

K  it is very uncomfortable imagining myself as a turtle ... erm 

JA  or imagine your hand 

K I don’t want to be a turtle. 

Pointing is a widespread form of representation of position, common in everyday discourse. 
While it might appear at first sight that students adopted the specialised gestures employed by 
the teachers/researchers, the students’ use and interpretation of these gestures may be closer to 
the resources of everyday discourse than to those of the MaLT microworld. 

While the scope of the teaching experiment described here was limited, our observation of 
these different ways of gesturing turtle movement leads us to ask whether the ‘playing turtle’ 
metaphor is fully adaptable and relevant to the three dimensional context? While we have 
extensive knowledge of our own body movement in the normal two-dimensional horizontal 
plane that can be connected to the movement of a turtle in the vertical plane of the computer 
screen, our experience and knowledge of movement in three dimensions is much more 
limited. Many of the movements required of a turtle constructing a path in the three-
dimensional space of MaLT are impossible for the human body within its normal 
environment. The extra leap of imagination required to ‘play turtle’ as if in control of an 
acrobatic aircraft or perhaps in deep water with highly developed underwater manoeuvrability 
may be too great for genuine body syntonicity. 

 

Figure 9: 'down pitch' 
indicates 'go. up'. 
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The use of the variation tool  

ETL analysis  

In task 3 the need to design figures in different planes of the 3d space challenged pupils to 
move the focus of their attention from directed turns between lines and planes to directed 
turns between two similar geometrical figures which is related to the conceptualisation of a 
dihedral angle in 3d space. For example, most groups of pupils recognised that in order to 
construct windows in two consecutive walls (planes in mathematical terms) the use of the 
commands ‘rr/lr’ or ‘up/dp’ was needed. During this construction process students easily 
identified the dihedral angle defined by the two consecutive windows (i.e. rectangles) and 
used the terminology familiar to them from 2d geometry in order to describe it. However, all 
groups of pupils had difficulties in identifying its measure. For instance, students of group C 
characterized the dihedral angle drawn by the turtle as an acute and not as a right one as it was 
the case, although they had commanded the turtle to leftroll 90 before drawing the second 
window (Figure 10). It seemed that students had focused more on the visual characteristics of 
the figural representation and were confused by the ‘distortion’ of the dihedral angle as a 
result of the use of a vanishing point in the line of horizon of the TS designed to strengthen 
the sense of depth in the representation.  

 

Figure 10 

 

However, the use of the two new types of turtle turns coupled with pupil’s explorations of 
angle as a dynamic amount that could by dynamically handled and changed sequentially using 
the functionalities of 1dVT facilitated further the visualization of different planes in 3d space. 
For instance, in task 4 (Figure 4) the same students decided to use not a fixed turn measure 
but a variable after the rightroll command so as to simulate the opening and closing of a door.  

The use of 1dVT allowed students to view their constructions from different perspectives 
which might have minimized the ‘distorting’ effects of static 3d the need to construct initially 
four rectangles dragging on the slider :c on the 1dVT. representation and prompted them to 
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focus on the measure of the turtle’s turn in the Logo code. The more the students appeared 
accustomed to the conventions used in the 3d simulated space the more they were able to 
coordinate the visual characteristics of the drawn angles with their measure related to turtle’s 
turns. For instance, during the dynamic handling of the revolving door simulation (task 5) 
students were able to overcome the difficulties faced earlier during task 3 and to recognize the 
four consecutive right dihedral angles created between the four rectangles around the common 
vertical side of the four rectangles (see Figure 11). Experimenting with the variables of the 
procedure ‘slide’ (see below), which was given ready-made to them (task 5), so as to create a 
revolving door moving around group C students progressively got able to handle different 
aspects of angle simultaneously. Since for random values of the variable (:c) four 
parallelograms appeared around the common side of them, S1 compared the visual outcome 
with a door and recognized 

to slide :a :b :c :d :e 

up(:d)  

lr(:e) 

repeat 4 [repeat 2  

fd(:a) rt(:c) fd(:b) 

rt(180-:c)] lr(90)] 
end 

Figure 11. The revolving door simulation.  

S1: Wait, we should move it here first. It’s the angle of the rectangle [moves the slider (:c) to 
the value 90 so as to construct 4 rectangles], so as to become like this (i.e. the door) and then 
probably turns with this [moves the slider (:e)]. Let’s see… 

S2: Yes, it definitely turns around with this [i.e. slider (:e)] as it has lr.  

S1: Yes, but we don’t only want it to turn, we also want it to move even further down. 

S2: I should change here [He puts the slider (:d) to the value 90 so as to have the 
simulation in a vertical position]. 

S1: Yes, 90 is fine. 

S2: Now, with this [points to the slider (:e)] it turns around normally. 

The above excerpt accompanied by the respective Logo code indicates that by dynamically 
manipulating the geometrical construction with the use of the 1dVT students created 
meanings in relation to angle (i) as a constitutive element of a figure which is defined and stay 
fixed (variable :c), (ii) as a means to move from the horizontal plane to the vertical one in 
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relation to the viewing axis of the user which is again defined and stay fixed (variable :d) and 
(iii) as a means of constantly changing planes in 3d space (variable :e) around the common 
vertical side of the four rectangles (Figure 6). 

IOE analysis 

In Session 4, a number of tasks were posed that involved using the 1d variation tool. I these 
tasks, students used the variation tool in order to explore pre-constructed models: 

manipulating a one variable model in order to ‘close up’ a triangular prism – objective to 
identify the triangular cross section as an equilateral triangle with 60° angles 

manipulating a two variable model to ‘close up’ a triangular prism – objective to recognise the 
relationship between an internal and an external angle of the prism 

manipulating a four variable model to construct a triangular prism – objective to identify 
relationships between angles and to identify edges that needed to be equal  

Because of the context in which we were conducting the study we were able to make less use 
of the 2d variation tool than had been anticipated. A task involving the 2d variation tool was 
posed as a follow-up to task b), manipulating both variables simultaneously. Very few 
students attempted this task and the data related to it is extremely limited. We therefore focus 
only on the use of the 1d variation tool. 

All the students attempted task a). Many were able to connect the values displayed on the 
variation tool with the movement of the shapes, in particular connecting the number 60 to the 
angle of an equilateral triangular face of a prism. This developed the angle measure repertoire 
of many students in the class. At the beginning of use of MaLT with the class, the 90 degrees 
was the only angle value used spontaneously by students either in discussion or in Logo 
commands. Throughout the experimentation, we observed students using 90 as a default angle 
value, inserting it in Logo commands before analysing the shape they were attempting to 
construct, then adjusting the value (for example by halving) or repeating the command in 
order to achieve the desired angle. It appeared that 90 was the only angle value that they were 
able to use with confidence (if not with accuracy). Before this session, we had not observed 
students using 60 as an angle value; they had tended to use 45 for any non-right turn, 
apparently relying on a halving strategy. The use of the variation tool for task a) provided a 
further angle value whose special significance emerged from its role as the outcome of 
successful completion of the task. For many of the students this emergence appeared to allow 
them to construct a chain of signification connecting the symbolic 60 on the variation tool 
slider to the triangular shape displayed in the turtle screen and hence to previous experience in 
mathematics lessons, working with angle values in equilateral triangles. In whole class review 
of this task, the ‘special’ nature of the 60 degree angle emerged as a new piece of ‘common 
knowledge’ among the class. 

Some students, however, although they could successfully manipulate the sliders, had 
difficulty connecting the numerical display to the shape. T had called the teacher (GD) for 
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help when faced with the task of explaining why the value of 60 on the slider made the 
triangular prism join up. 

1 GD When you look at just the triangle bit, what type of triangle is it? 

2 T triangular prism? 

3 GD Just the triangle, forget about the fact that it's three dimensions. What type of 
triangle is it? 

4 T … (hesitates - no answer) 

5 GD What can we say about the lengths of the sides? 

6 T They're all equilateral 

7 GD Exactly. It's an equilateral triangle. So what are the angles in an equilateral 
triangle? 

8 T All the same 

9 GD They' re all the same and they have to add up to? 

10 T One hundred and eighty 

11 GD So what's the size of an angle? 

12 T One hundred and eighty 

13 GD They add [emphasized] up to one hundred and eighty 

14 T forty five degrees 

15 GD What's three lots of forty-five? 

16 T pardon? 

17 GD What's three lots of forty-five? 

18 T um … 

19 GD Does it make one hundred and eighty? 

20 T … (shakes head - no) 

21 GD So what number do we need for three lots of that same angle to make one 
hundred and eighty degrees? 

22 T … seventy? … sixty? (very quiet and hesitant) 

23 GD … So what's the angle in an equilateral triangle? You think about that. 

24 T Is it forty-five? (more loudly and confidently) 
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The teacher (GD) attempts to lead T through a sequence of logical steps to construct the 
following argument: this is an equilateral triangle; the sum of the angles of any triangle is 
180; an equilateral triangle has three equal angles; the sum of these three angles must be 180; 
therefore each of the angles must be 60. However, T does not join successfully in the IRE 
sequence to co-construct this argument. The apparent failure of this dialogue to help T make a 
connection between the value 60 and the size of the angle seems related to the discontinuities 
in the theme of the discussion at lines 14/15 and 22/23. GD changes the theme from angle to 
calculation and then back again. T’s lack of connection between the two themes is evidenced 
by her request for clarification “pardon?” at line 16 and by the contrast between her hesitance 
at line 22 and her confident repetition of her answer forty-five at line 24. T’s difficulty in 
dealing with thematic discontinuity also seems evident in her lack of any answer after the shift 
at lines 2/3 between considering the 3D representation in the MaLT turtle screen and 
considering an abstract equilateral triangle. It seemed surprising to us, as well as to T’s 
teacher, that the juxtaposition of the symbolic 60 displayed on the variation tool and the visual 
display of an equilateral triangular prism on the turtle screen did not support T in recognising 
at least that 60 was likely to be an answer to some of GD’s questions. It seems that, in spite of 
the dynamic relationship between variation tool and turtle screen object and in spite of the 
naming of the variable ‘angle’, T was unable to connect the two representations. 

The question emerges of why some students were able to make use of the relationship 
between the symbolic output of the variation tool and the visual feedback in the turtle screen 
to form a chain of signification that enabled recall and subsequent use of the ‘special’ role of 
60 degree angles in equilateral triangles, while others. like student T, were not able to do so. 
Clearly, although the class had had similar previous curricular experience, there was some 
variability within the group of students with respect to the security of their knowledge about 
angles in triangles. None were fluent in their angle knowledge but, while for some the 
symbolic-visual connection was sufficient to support them in recalling and possibly 
strengthening previous experience, others did not have a sufficient basis to be able to make 
the connections. This observation has implications for the suitability of use of MaLT with 
students; the representations that MaLT offers necessarily interact with those students are 
already familiar with. It seems a certain threshold level of knowledge is necessary to allow 
fruitful chains of signification to be formed. 
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VI. Cruislet cross-case analysis for DEL18 

VI.1. Identification 

Teams involved : ETL and DIDIREM 

VI.2. Contextual elements 

 ETL DIDIREM 

School level Grade 10 (two classes) Exp 1 : Grade 11 (2 classes) – 
16/17 ans 

Exp 2 : grade 9 (2 groups of 
pupils) -14/15 ans 

 

Number of classes and 
students involved 

2 classes: 24 students 

Class A1: 12 students in 6 
pairs  

Class A2: 12 students in 6 
pairs 

2 students in each pc  

Exp 1 : 2 classes : 60 students 

Exp 2 : 2 groups : 18 students 

Number of sessions and 
hours of the experimentation 

Class A1 : 20 hours in total, 2 
days/week 

Class A2: 8 hours in total, 2 
days/week 

Exp 1 : 3 sessions (4 hours) 

Exp 2 : 1 session (3 hours)  

 

ETL Context 
Apart from the lessons of informatics -which is taught in the computer lab- the teaching of the 
various subjects in Greek high schools usually, takes place in a typical classroom where 
students sit in two at desks looking at the front of the classroom where the blackboard and 
teacher’s desk are placed. Although computer use for doing mathematics is suggested in high 
school curriculum, mathematics teachers usually don't use computational environments as it 
isn't officially part of the curriculum. Consequently, students are not familiar in using 
computer environments to explore mathematical ideas. In addition, the computer laboratories 
are usually occupied for the teaching of informatics. On the contrary, students are already 
familiar, from their out-of-school activities, with 3D game environments and representations 
such as those provided by Google map. The Cruislet software has game-like features such as 
navigation in 3D space by avatars and geographic maps, thus students are already familiar 
with the kind of provided representations.  



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX II 

105 

Twenty four students of the 1st grade of upper high school, (aged 15-16 years old) 
participated in this experiment. Students worked in pairs in the PC lab. Each pair of students 
worked on the tasks using Cruislet software.  

The students were not accustomed in using computers for doing mathematics, but they were 
familiar with computers and liked using them, as almost the whole class participated in the 
computer class (available as a course to choose at this school level). On the other hand, 
concerning the concepts of geographical and spherical coordinates, none of the students had 
previous knowledge or experience with spherical coordinates and only four of them believed 
that the acquired experiences during the geography course supported their understanding of 
the concept of geographical coordinates. Some of the students were familiar with the basic 
Logo commands (movement of the turtle, such as front, right, etc.) but none of them was 
experienced in using programming languages. Finally, few students were familiar with map 
computational environments and especially with Google Earth. Nevertheless, almost all of the 
students were used to play computer games and most of them were familiar with 3D game 
environments.  

Concerning the mathematical concepts that are embedded in the number of tasks in which 
students have been engaged, there is a considerable distance from the traditional structure of 
the mathematics curriculum. In a traditional mathematics class students study the concepts of 
Cartesian, geographical and spherical coordinate systems within abstract mathematical 
contexts in a rather static way. They are introduced to the concept of function through static 
representations provided in their textbooks without having the opportunity to manipulating or 
change them. Additionally, students are introduced and study the concept of vectors mainly in 
physical sciences for the description of a number of physical properties such as velocity, 
force, acceleration. 

DIDIREM context: 
In France, comparatively, the use of computer environments is part of the curriculum from 
junior high school, and since a few years, at the end of junior high school, students validate 
the knowledge gained in that area through the B2I. The use of specific software especially 
spreadsheet and dynamic geometry is also part of the mathematics curriculum, but this does 
not imply a general and substantial use. As in Greece, access to laboratories can be rather 
difficult and a collective and episodic use of software in the ordinary classroom thanks to a 
video-projector is more widespread.  

DIDIREM developed two different experiments with Cruislet: the first one with grade 11 
students, the second one with grade 9 students. For the first one, the experiment was 
associated with the initial phase of a multidisciplinary project work. The first session was 
collective with one computer connected to a video-projector, the two other sessions took place 
in a lab class where students worked by pairs on computers, the teacher having his computer 
connected to the video-projector. The second experiment took place at the University Paris-
Diderot. Each year, the mathematics department receives grade 9 students coming from 
neighboring high schools for a one week stay. In the frame of this program, a 3h workshop on 
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Cruislet was offered to the students in parallel with other workshops. The students worked by 
pairs at computers and their work was supervised by DIDIREM researchers. 

The mathematics teachers of the grade 11 students involved in the first experiment regularly 
used computer facilities both in the classroom and in lab sessions. This was not the case for 
the grade 9 students involved in the second experiment, even if they had used spreadsheet and 
Internet at school. Like Greek students, all French students were familiar with computer 
games. 

The fact that the geographic map in Cruislet is the map of Greece made the object not familiar 
but contributed to the students’ motivation and interest. In the design of the experiment, 
DIDIREM team tried to benefit from this particular situation in the first phase of the 
pedagogical plan where Cruislet was introduced. In the first experiment, a history-geography 
teacher was involved and guided the exploration of the map, using places of interest for 
geographical or historical reasons. He also made the link between the coordinate system of 
Cruislet and the notions of latitude and longitude introduced and used in geography. In the 
second experiment, there was no secondary teacher as explained above, but a similar strategy 
was possible and successfully used as history of Greece and the notions of latitude and 
longitude are part of the junior high school curriculum.  

From a mathematical point of view, the DIDIREM pedagogical plan focused on vectors and 
trigonometry in 3D space. In France, vectors are introduced in mathematics first in the context 
of 2D geometry, and this takes place in grade 94. Vectors are introduced as objects 
characterized by their direction, sense and length, and tightly linked with translations (the sum 
of vectors is associated with the composition of translations). In grade 10, he product of a 
vector by a scalar is introduced in grade 10 and vectors enter also the scene in physics. The 
generalization to 3D space comes later (grade 11). Students are not introduced to spherical 
coordinates in maths in high school. Trigonometry for its part is progressively introduced 
from grades 8 and 9 (trigonometry in the triangle). In grade 10, angles of vectors and 
trigonometric functions enter the syllabus. There is no spherical trigonometry in high school. 
Moreover, none of the students involved in the experiment knew the Logo language.  

The ETL Pedagogical Plan 
This plan includes three successive phases briefly described below. 

First phase: Learning to fly (Familiarization) 

This  phase  is  considered  as  introductory  to  the  Cruislet  environment  and  the  provided 

representations. The aim of the tasks that are included is students’ familiarisation with:  

Geographical coordinates 

Spherical coordinates 

Logo programming language 

                                                 
4 The syllabus mentionne dis that in place when the experiment took place. 
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The 3d terrain scene 

In particular, students’ are encouraged to explore DDA’s functionalities by:  

Exploiting geographical or/and spherical coordinates systems for freely navigating upon the 
3d map of Greece 

Exploiting both systems of reference for displacing the avatar in specific places of the 3d map 
(e.g. the city of Athens) 

Editing basic Logo commands to perform navigation using both systems of reference.  

Taking-off and landing the avatar in specific places using either the GUI or the Logo 
programming language. 

Integrating the geographical and the spherical coordinate system in the process of navigation 
and making conjectures concerning the way that these two systems of reference are possibly 
related. 

Second phase: Airplanes' chase 

In the tasks that are included in this phase students are encouraged to experiment with 
programs defining the relative displacements of two airplanes by varying the geographical 
coordinates of their new positions. Reflecting on their actions they are encouraged to explore 
the rate of change of these positions and formulate the function that defines this dependent 
relationship. This function is hidden and the students had to guess it based on repeated moves 
of aeroplane A and observations of the relative positions and moves of planes A and B.  

In particular the Logo program copied below is used. The procedures included are a black box 
to students and students experiment with the result of the execution of these procedures. 

The 'Radar' program 

to begin 
createavatar("|white| 37.94 23.94 5000 "|Plane 1|) 
createavatar("|red| 37.89 23.92 5000 "|Plane 2|) 
activateavatar("|white|) 
setupcamera(15000 0 -87 -41 0) 
end 

to radar :a :b :c 
activateavatar("|white|) 
setpos(:a :b :c) 
wait(1) 
activateavatar("|red|) 
setpos(:a-0.1 :b-0.05 :c-2500) 
print("Coordinates oppos()) 
if and(and(and(:a>40.73 :a<40.74) and(:b>22.99 :b<23.1)) :c<3001) 
[print("Escaped! ) removeavatar("|red|)]  
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setupcamera(25000 0 -87 -41 0) 
end 

Students are actually asked to study the relation between the two aeroplanes, the rate of 
change of their displacements and consequently find the linear function (decode the rule of 
the game). In order to decode "the rule of the game", they should give various values to 
coordinates (Lat, Long, Height) that define the position of the first plane. They are 
encouraged to communicate their observations about the position of the second plane to each 
other and form conjectures about the relationship between the positions of the two aeroplanes. 

Once the rule of the game is decoded the Logo program is released and the students are 
encouraged to build their own rules of the game by changing the function of the relative 
displacements of the two aeroplanes. Initially, they are asked to write down their ideas in 
order to create the new rules of the game. Then, students interfere into the Logo code and 
change it according to the rules they decided to create. As a result they come up with new 
Logo procedures that define the rules of the game they created. Finally, students exchange 
these new Logo programs and they are challenged to decode the rules of the games that their 
classmates developed. 

Third phase: The instruments are broken 

Students’ engagement with the tasks that are included in this phase focuses on the study of the 
function that defines the dependent relationship between the geographical coordinates of the 
displacements of an avatar. In particular, they are asked to navigate a specific airplane by 
setting the geographical coordinates of the new position in a black box Logo procedure. The 
outcome of this procedure is the displacement of the airplane in a relative position. Students 
are encouraged to explore the relation between these two positions (the given and the 
outcome) and actually investigate the existence of the linear function that defines this 
dependent relationship. Students are experimented by varying the geographical coordinates of 
the given position and study the respective coordinates of the outcome position. Emphasis is 
given to the development of interaction between students concerning their observation and 
their approach to define the hidden functional relationship between the geographical 
coordinates of the two positions. They are encouraged to write down their observations in 
worksheets and express them verbally, symbolically and graphically. Finally, students are 
challenged to verify their conjectures concerning the functional relationship by navigating the 
airplane towards a specific place on the 3d map of Greece, i.e the city of Rhodos. 

The DIDIREM Pedagogical Plans  
We successively present the pedagogical plans corresponding to the two experiments 

First pedagogical plan 

The organization splits into several phases 

First phase : Presentation of the software 
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a) Collective presentation of the software using a video-projector. The collective presentation 
will explore the main characteristics of the DDA:  

• virtual exploration of Greece, location of important historical and touristic places by 
scrolling the 3D map and zooming in/out,  

• creation of an avatar, and presentation of the different existing modes for moving this 
avatar (entering a final position in (lat, long, height), a vector displacement in 
spherical coordinates or a city name),  

• presenting the camera system, and looking for reasonable parameters for it,  

• exploiting the interrelation between representations (for instance for getting the 
coordinates of a particular place),  

• exporting the displacement of an avatar into a Logo procedure.  

b) Collective programming of a first trip with one stop, for instance a flight from Athens to 
Sparte. Programming should first be done by using absolute positions, then by using 
displacements. Angle Fi could be 0 for the first step, then vary to produce a change in altitude.  

c) Small group work for preparing variations of the initial trip.  

d) Collective discussion: listing the questions raised this first activity and the solutions found 
or advances reached by the different groups.  

Second phase : Preparing and programming trips 

a) Collective discussion: coming back to the questions raised at the first session if necessary.  

b) Small group work: each group completes at least one travel.  

c) Collective discussion and synthesis : How to prepare a trip? What data are necessary? How 
to get these? How to program a trip? What has been learnt about the different commands?  

d) Small group work on a new problem. Adding a turn around Olympe Mount  

e) Collective discussion: Comparing the strategies used. How to design a circular trip at a 
given altitude? What to change to design an helicoidal trip? Or to design a spiral trip at a 
given altitude?  

Third phase : Coping with the wind effect (not implemented in the classroom) 

Fourth phase : Project work (not implemented)  

Second pedagogical plan: 

First phase 

The teacher-researcher uses the video projector to illustrate the first important functionalities 
of the software: 

 the two graphic zones in two or three dimensions 
 the functionalities of zooming and scrolling in 3D offered by the mouse 
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 the information button (I) that allows the display of the region, the longitude, the 
latitude and altitude of the current point. 

 
Students are invited to familiarize with these first functionalities by looking for longitudes, 
latitudes, and altitudes of some given cities, then to choose themselves a particular location 
and characterize it. The first phase ends with a collective discussion in form of report where 
the values obtained by the different groups are compared and the differences in altitudes 
explained. The extreme latitudes and longitudes of Greece are also collectively looked for, 
and the particular locations selected by some groups identified from their coordinates. 

Second phase 

The teacher-projector uses the video projector to explain how to introduce a plane (the menu 
“avatar”) and how to move it in two possible ways: 

12. Firstly, using the menu “select a destination”, or entering into the menu “position” the 
latitude, longitude and altitude of the selected place. During this explanation, the 
teacher asks students to introduce a plane on their computer and to bring it to Athens, 
then to Patras.  

 
25. Secondly, using the menu « direction » and entering a vector for moving the avatar 

defined by its spherical coordinates (Theta, Fi, Rm). The teacher illustrates this 
operating mode via some examples and students are invited to do the same. Then, he 
asked students to anticipate the effect of some selected movements (using angles 
corresponding to horizontal movements in the four cardinal directions in particular) 

At the end of this phase, an impossible movement is introduced in order to have the students 
face the kind of feedback provided by Cruislet in that case. 

 
Students are then invited to change the form of their avatar into a helicopter and a challenged 
is proposed to the groups. They have to land the helicopter as close as possible to the summit 
of on Mount Olympus. The second phase ends again with a collective discussion based on the 
reports of the different groups. Students explain their strategies and announce the altitude at 
which they managed to land the helicopter. Different strategies are compared. The question of 
reducing the number of movements is raised and put in relation with the addition of vectors. 

Third phase 

During this first phase, students must organize from the altitude of 400m above Athens a 
flight to Sparta with the constraint that it should be as short as possible. Then they have to: 

13. identify the two mountains on the journey from Athens to Sparta, their position 
compared with the cities Athens and Sparta and their altitude; 

14. define a strategy for bypassing or flying over two mountains. 
 

If they choose to fly over the two mountains, they are asked to: 

  use the map of Greece for identifying the value of Theta corresponding to a flight 
from Athens to Sparta; 
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 choose at least two intermediary points for defining the flight over the mountains 
(distance of Athens, altitude); 

 calculate the angles Fi and rays Rm for the different parts of the flight from Athens to 
Sparta 

 
This third phase is also the object of a collective discussion of the strategies used that are 
visualized and tested, and the calculations involved are explained to lead to the comparison of 
journey lengths.  

Fourth phase: 

Students are collectively presented with an acrobatic flight corresponding to the following 
program: 

Connecting the visual characteristics of the flight and the program, they are asked to interpret 
the commands, then to transform the program in order to have the avatar describe: 

 an horizontal spiral 

 an horizontal circle 

 an helix,  

then freely create acrobatic flights.  

VI.3. Theoretical frames  

ETL Theoretical frames 
We adopted the approach of students’ gradual mathematization within game-like activities in 
problem situations that are experientially relevant to students. Hence, our intention was to 
involve students in activities through which they would use symbols, make and verify 
hypotheses in order to solve a particular real problem in a rich collaborative learning 
environment. Within the framework of instrumental genesis, we particularly focus on 
instrumentalization, i.e. the ways in which students learn through making changes to the 
digital artefact at hand. We studied the idea of pedagogical design of artefacts so that students 
would inevitably poke, tweak and make changes to their functionalities as part of their 
mathematizations. Consequently, we saw a helpful relevance in studying mathematizations in 
a constructionist environment as path towards clarifying the idea of instrumentalization by 
design.  

We see these kind of artefacts like Crusilet as designed for mathematizations through 
instrumentalization and call them ‘half-baked microworlds’. Students were provided with 
tools allowing them to navigate avatars by making choices between spherical and 
geographical displacement controllers, study Logo programs of sequential functional 
displacements and finally interfere into the Logo code and change it according to the rules 
they decided to create. Half-baked microworlds are designed to incorporate an interesting idea 
but at the same time to invite changes to their functionalities and are mediated to the targeted 
users as unfinished artefacts which need their input. In that sense, such kind of microworld 
invites constructionist activity and they are designed for mathematizations through 
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instrumentalization. Finally, although constructionism is considered to be an individualistic 
theory of learning, we studied students working in pairs or threes collaboratively including 
their verbal exchanges and argumentations.  

DIDIREM theoretical frames 
The DIDIREM pedagogical plan relies on three different theoretical frames: the Instrumental 
Approach, the Theory of Didactic Situations, and the Anthropological Theory of Didactics. 
The impact of these theoretical frameworks on the design is evident when one considers the 
following points: 

 In the design of the two experiments, a specific attention is paid to Cruislet 
instrumentalization. The first contact with Cruislet is organized in two steps: first 
focusing on the geographical part of Cruislet without introducing avatars, then 
introducing avatars and the different ways these can be moved. It carefully alternates 
collective and individual phases. Programmation in each case is introduced at a later 
stage. Instrumental needs are also reduced, especially in the second and shorter 
experiment, by fixing the parameters of the camera. These design choices result from a 
analysis of Cruislet characteristics guided by the instrumental approach. 

 In the a priori analysis of Cruislet, particular importance has been given to the 
feedbacks provided by Cruislet and the way these can support the autonomous activity 
of students. The tasks proposed to them have been designed in order to take the 
maximum benefit of these feedbacks. One can see there an evident influence of TDS. 

 The reference to ATD made the DIDIREM team especially sensitive to the existing 
distance between Cruislet, the French mathematics curriculum, and more globally the 
kind of software used in mathematics courses, and to the ecological problem resulting 
from this situation. The team thus tried to find for this DDA a possible “habitat” and 
“niche” in the French educational system. This led to the choice made of 
experimenting Cruislet in the frame of pluridisciplinary projects in grade 11, and in 
university workshops in grade 9. This also influenced the educational goals chosen for 
the two experiments (see below) and for instance the fact that tasks leading students to 
revisit old knowledge (angles, vectors, trigonometry) in new and non usual contexts 
were designed.  

VI.4. Comparison of didactical functionalities 

The comparison of didactical functionalities for the two experiments is summarized in the 
table presented below.. 
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 ETL DIDIREM 

Tool 
Features 

 

Multiple linked representations Proximity with out-of-school technology 
(maps and avatars) 
Spherical coordinates, angles, vectors, 
Logo programming making possible 
access to programming activities and to 
differential vision of curves 

 

Educational 
Goals 

 

The investigation of the
mathematical meanings that
students construct regarding the
notion of function as co- variation 
while navigating in 3d large scale
spaces. 

 

Use Cruislet characteristics for 
connecting school mathematics and out-
of-school activities, and making students 
sensitive to the mathematics involved in 
social technology. 

Use Cruislet potential for having 
students work on 3D representations, 
angles, vectors, linking this work to 
displacements in 3D space.  

Reinvest prior knowledge in non-
standard settings (angles and 
trigonometry). 

Familiarize with notions of 
mathematical interest beyond the 
secondary curriculum (ie spherical 
coordinates)  

Introduce students into Logo 
programming, giving sense to Logo 
procedures as records of displacements, 
showing the power of iteration and 
offering new differential visions on 
geometrical curves  

 

Modalities 
of 
employmen
t 

 

Students by exploiting the 
geographical and spherical 
coordinates systems of reference 
both in GUI and LOGO editor tab, 
make hypothesizes and form 
conjectures concerning the 
dependent relationship of the 
displacements of the avatars. 
Although the students’ engagement 
supported initially by the game-
like characteristic of the activity, it 

A selection of tasks organizing a careful 
progression in Cruislet 
instrumentalization, trying to maintain a 
tight connection between the 
geographical features of Cruislet and 
avatar moves, proposing challenging 
problems making sense in out-of-school 
activities, offering students the 
possibility of reinvesting their 
mathematical knowledge in new and 
unusual contexts, and allowing students 
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gradually incorporated 
mathematizations which were 
perceived as functional tools to 
play the game or to solve a task. 
Moreover, the students were 
interested in the game of 
constructing new flight game 
puzzles for other students by 
inserting hidden functional 
relationships. 

 

to progress as much as possible in an 
autonomous way thanks to the different 
feedback provided by the DDA.  

An combination of collective phases and 
group work.  

 

VI.5. Results of the cross-case analysis together with illustrative 
examples 

The experiments carried out were thus quite different and not easily comparable. In what 
follows, we present the parts we have selected in the two-experiments for showing these 
differences. Then, in the last part, we exploit these and the whole experimental process for 
drawing lessons for the connected theoretical landscape. 

ETL experiment 
The data of ETL experiment consists of audio and screen recordings as well as students’ 
activity sheets and notes. The data was analyzed verbatim in relation to students’ interaction 
with the provided representations. The focus of the analysis was on the process by which 
implicit mathematical knowledge is constructed during shared student activity. As a result, 
students through a process of mathematization of geographical space constructed several 
meanings concerning the concepts of functions, coordinates and vectors. These meanings 
were categorized in clusters that accordingly rely upon each concept. The most interesting 
categories of students’ meanings regarding each mathematical concept are presented: 

Functions 

Students engaged with the notion of function, through their experimentation with the 
dependent relationship between two airplanes’ positions, which was defined by a black – box 
Logo procedure (Figure 3). In their attempt to find out the hidden function, they were able to 
coordinate changes in the direction and the amount of change of the dependent variable in 
tandem with an imagined change of the independent variable. Our results indicate that 
students developed covariational reasoning abilities, resulting in viewing the function as 
covariation. 

Initially most of the students expressed the covariation of the airplanes’ positions using verbal 
descriptions, such as behind, front, left, etc. as they were visualizing the result of the 
airplanes’ displacements. Students experimented by giving several values to geographical 
coordinates in Logo and formed conjectures about the correlation between airplanes’ 
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positions. Through their interaction with the available representations, they successfully found 
the dependent relation of the function in each coordinate, resulting in their coming into 
contact with the concept of function as a local dependency. 

From a theoretical point of view, students’ gradually mathematize the game-like activity by 
instrumentalizing the provided half-baked microworld. In particular, students gradually 
incorporated mathematizations which were perceived as functional tools to play the game or 
to solve the task 

Coordinates 

Students didn’t always choose one system of reference to navigate in space, but several times 
combined both to make a displacement. In this way they created links either between 
distributed coordinates (e.g. height of geographical and fi of spherical) or between all three of 
coordinates for the two systems of reference. 

In their attempt to place the plane at a specific height, students used primarily the height 
coordinate. However, there were some teams that were using spherical coordinates to carry 
out almost all displacements. Based on students’ actions on a team like that, students were 
trying to find a way to raise the airplane’s height to a specific value, while utilizing the 
spherical coordinates. In fact one of them gave the idea to use the fi coordinate and raise the 
airplane by asking the other one: ‘The height is fi?’ and afterwards he edited the fi 
coordinate’s value in order to raise the plane. This statement is interesting as the student 
endeavour to create meaning around the fi angle that represents airplane’s perpendicular 
angle, in relation to the height that the plane will be placed. 

Another episode where students create a link between coordinates is that of longitude and 
theta coordinates. In the following episode the students of a team argue about the system of 
reference that displaces the airplane ‘right – left’. 

S2: It goes right and left. (referring to longitude)  

S1: Right and left.  

S2: Yes. 

S1: No. Theta is right and left.  

S2: These are the degrees.  

S1: Yes, the degrees it turns to the left or right.  

S2: I’m saying to displace at the same time.  

This episode is interesting as it depicts the way students verbally express the way they realize 
the displacement while using longitude or theta angle of spherical coordinates. In both cases 
they use the expression ‘right – left’ giving the displacement a sense of direction. However, 
S2 supports that longitude doesn’t have to do only with turning like theta, but with displacing 
as well. The way he externalizes his thought demonstrates that he is aware of the 
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interdependent relationship between longitude and theta. Concluding,we could consider that 
the instrumentalisation process concerning the different coordinate systems was based upon 
the modalities of use of the available representations built in the DDA.  

Vectors 

While interacting with Cruislet environment, students defined the vector of displacement and 
through this activity they got involved with the notion of vector. As a result, several meanings 
emerged concerning vectors and their properties. 

Magnitude 

Vectors’ magnitude is represented by R in spherical coordinates, so it had to be defined when 
this system of reference was utilised. During their experimentation students realized that R 
was remaining constant for a displacement between two specific cities and additionally that 
was independent of the direction of the displacement. In the following episode students 
displace the airplane between two cities in their attempt to find their distance.  

S1: This must be their distance. (Shows the vector created by airplane’s displacement 
from Arta to Amfissa) 

S2: Yes. But how can we find it?  

S1: The R m. (Meaning R in spherical coordinates).  

S2: No, it’s not R m.Oh, you‘re right! Wait. (Displace the airplane from Amfissa to 
Arta and they watch R values in direction). 

S1:You see? It’s the same.  

The interesting issue is that although they displaced the airplane towards one direction, they 
wanted to verify that the distance was remaining constant for the inverse displacement as 
well. If fact S1 used this as an evidence to persuade S2 that R represents the distance between 
the two cities. Our interpretation of S1’s way of thinking is that perhaps he used his intuitions 
or pre-existed knowledge to apply a property of vectors’ magnitude in this particular situation 

Addition of vectors 
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An interesting episode was that of a team that used intuitions to identify the resulting 
displacement if this is defined by multiple displacements. This was occurred while students 
were trying to construct the rules of a game for the other team. To be more specific, students’ 
idea included the relative displacement of two airplanes, based on planes’ coordinates. Here 
we focus only on the correlation of two planes’ displacement (named red and blue by 
students), as they were moving relatively to theta angle and particularly their dependence can 
be represented as Thetablue = Theta white +180ο. One of the preconditions of the game was 
also that the first (white) must go to a particular city (i.e. Thessaloniki) to end the first phase 
of the game. Initially students sketched their idea in order to explain it to the teacher, as 
shown in Figure 1. In the following excerpts, the students explain their drawing: 

S2: As we go up, the other, the spy, will go down contrarily, towards Crete. […] Let’s 
say, if we go 10 step upwards, he goes down 10 step downwards’.  

S1: Blue is conversely commensurate. That is to say, we go 10 meters, he goes 10 
meters above. When we get to Thessaloniki, he will get to Rethymno. 

From their dialogue we can assume that they were thinking about multiple displacements, as 
specified by the length of each displacement (i.e. 10 meters). We see that S1 seems to think of 
the result of these displacements as he mentions the final destination of each airplane. The 
interesting thing is that he argues that when the first will be at a specific city, the other will be 
at a specific city as well, independently of the number of displacements, implying that he used 
his intuition to add the vectors of displacements and find the final destination of the 2nd 
plane. 

 

As the researcher was not sure if S1 used vectors’ addition, she asked him to draw another 
figure and picture planes’ position when the displacements would not be at the same line and 
asked him if the second airplane would be placed in the same city as in the first case. The 
student answered ‘If we go to Thessaloniki, he‘ll be at Crete’ and draw the schema shown in 
figure 2. From his drawing we can see that although he hasn’t added the vectors graphically 
he is thinking that the only thing that matters is the starting and the ending point. 

So whatever the direction of vectors would be, the second plane would be placed in a specific 
city, taking into account that there is a dependent relationship between the two airplane. We 
find this episode interesting, due to the way students use their intuitions to express 
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mathematical meanings without using vector’s terms, that is to say without mathematical 
formalism. 

As it is clear evidenced, students gradually mathematized the provided half-baked microworld 
and instrumentalized the provided functionalities by making and verifying conjectures, 
generalizations and formalizations concerning the notion of vectors. 

DIDIREM (Exp 1 & Exp 2) 
For the first experiment, the analysis showed that, in spite of the interest shown by the 
students for working with the software, instrumentalization of the different representations 
and the coordination between these required by the piloting of avatars took more time than 
anticipated. This was evidenced for instance by the distance observed between collective 
achievements and personal or group achievements, by he limited use of some representational 
possibilities (3D controller), and by the limitations observed to the a-didactic functioning 
expected. 

The analysis also attracted the attention of DIDIREM researchers on the mathematical 
requirements of the tasks proposed to students in the first phase of instrumentalization of 
Cruislet (the risk of cognitive overload was certainly under-estimated in the design of the 
tasks), and also on the influence of institutional norms on teachers’ decisions even if the 
specific context of TPE was less constrained.  

The second experiment contrasted with the first one as main Cruislet features were proved to 
be quickly accessible to grade 9 students thanks to the changes introduced in the scenario in 
terms of tasks and of the tight interaction between the group and collective work along the 
session. Nevertheless, similar difficulties were observed with the design of a flight under 
constraints requiring the use of some trigonometry and Pythagoras theorem. Of course, the 
reduced length of the workshop and the limited number of implementations (2) nevertheless 
obliges to be careful in the generalization of these positive conclusions.  

In what follows, we focus the analysis on the part involving Logo programming in the two 
experiments. This choice is motivated by the fact that the corresponding tasks were directly 
inspired from tasks proposed by ETL team on the one hand, and also because even if inspired 
by ETL, the scenarios in which they take place are quite different that those ETL would 
design. Moreover the two experiments show two different ways of exploiting Logo 
programming of geometrical flights.  

Experiment 1: a progressive approach of iteration. 
 
A priori analysis 

The plan, discussed with the two teachers, was to make students program flights involving the 
repetition of the same action. An equilateral triangle was chosen as the simplest repetitive 
figure. Because at first the students do not know the LOGO structure for repetition, it was 
expected that they would simply write three lines with the same action (phase 1). Because we 
thought that an a-didactic phase conducting students to imagine by them the necessity of a 
repetitive structure would not be possible in the limit of the experiment (less than one hour 
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was devoted to the whole approach), we chose to give students a Logo program realizing an 
equilateral triangle by way of this repetitive structure (second phase). In order that students 
have to analyse the program and understand the structure, we did not choose the same 
triangle: we chose a triangle in the vertical plane and asked students to adapt the program for 
a flight in the horizontal plane like they did in the first phase. We expected then that students 
would understand the structure as interesting means for writing ‘economically’ programs for 
repetitive figures.  
In order to assess this understanding, we asked them to program a regular hexagon flight 
(phase 3). We then thought that students would be able to understand a circle as a regular 
polygon with ‘many’ sides. Thus the last question (phase 4) was to program a circular flight. 
 
Note that in phase 2, the requested change was related to the ‘body of repetition’: changing 
the iterative variable from teta to phi, while in phase 3 and 4, it was asked to change the 
number of repetitions.  

 
A posteriori analysis. 

Due to the difficulties they encountered with the previous work (trigonometry), few students 
actually went further than phase 1 (equilateral triangle without repetition), and no one did 
phase 4 (the circle). Students that tackled the phase 2 task, correctly changed the Logo 
program. For the hexagon (phase 3) some reused the repetitive structure, while others just 
wrote six identical lines. 
The experiment was clearly too short for a conclusion. We can only think of this plan as a 
possible approach of repetition in a course about ‘algorithmic’ that should become part of the 
French math curriculum. Note that this plan is consistent with a classroom organisation where 
students work alone or in pair on a computer. In this organisation, the teacher cannot ‘explain’ 
the repetitive structure. Students have to make sense of this structure alone. 

 
Experiment 2 : from acrobatic figures to geometric flight. 

 
A priori analysis: 

In this second experiment, geometric flights are used both for introducing students to Logo 
programming and for enriching their vision of curves with a local and differential perspective 
inspired by Papert’s view regarding the way Logo could renew the perspective on such 
geometrical objects. 

In contrast with Exp1, this work was made collectively by a small group of students under the 
direction of a teacher. In addition, it was not a regular course.  

Due to the constraints of time of the experiment and the absence of familiarity of students 
with programming, the choice has been made to propose a first Logo program to students and 
ask them to make sense of it by executing it and connecting the trajectory of the avatar with 
the Logo program.  

A general aim was to introduce students to “the power of computing” and then the choice for 
this part of the experiment was to start from a ‘surprising’ Logo program, that is to say that 
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the program is short, but the resulting flight is complex. This program had been proposed by 
the Greek team in the familiar scenario. There is an iteration on the three parameters defining 
the displacement: theta, fi, and r. 

 

Figure 1 : Acrobatic flight 
 

Make "theta 0 make "fi 0 make "r 0 make "i 1 repeat 720 [ SETDIR(:theta+:i :fi+:i :r+:i/2) 
make "i :i+1 wait(1) ] camdist(50000) 
 

Once students have understood the program, they are asked to modify it in order to produce 
an horizontal spiral flight, and then a circular flight.  

A posteriori analysis 

After executing several times the program, the students decoded it by themselves and changed 
it for a spiral (as shown in figure 2 below).  

Make "theta 0 make "fi 0 make "r 0 make "i 1 repeat 720 [ SETDIR(:theta+:i :fi :r+:i/2) 
make "i :i+1 wait(1) ] camdist(50000) 

 

To program a circle, there was a difficulty, because they first erased +:i/2 in :r+:i/2, like they 
did before for :fi. They first did not pay attention to the initialisation. The avatar did not 
move. Students were surprised and tried to understand why. There was a discussion about the  
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Figure 2: The spiral flight 

meaning of :r and its value in the program. In the discussion two positions appeared some 
students thinking of :r as the circle’s radius and others correctly interpreting :r. 

They tried increasing values or :r until they got a sufficiently big circle with the following 
programm: 

 
Make "theta 0 make "fi 0 make "r 100 make "i 1 repeat 720 [ SETDIR(:theta+:i :fi :r) make "i 
:i+1 wait(1) ] camdist(50000) 

  
They also noticed that the avatar draws twice the circle and made the connection with the 
number of iterations (repeat 720). They noticed the increasing relationship between :r and the 
radius, but there was no time to better specify this relationship.   

As a summary of Exp 1 and 2, we can say that they represent two different approaches, based 
on the modification of an existing repetitive program. Working to understand and modify the 
program was perhaps more motivating in phase 2, because the resulting trajectory is amazing. 
This task was thought feasible thanks to the collective organisation of the work. 

VI.6. Potential offered for the theoretical landscape 

The cross-case analysis of the two Cruislet experiments is quite interesting for several 
reasons. Among the different DDAs developed and used in ReMath, Cruislet is without any 
doubt the one which is the most distant from the software usually used in mathematics 
education, and its representations the most distant from those used in secondary mathematics 
education. It is also the DDA which appears the closest to out-of-school widespread 
technology. Its geographic maps evoke systems such as Google earth or the IGN maps in 
France, the moving of avatars can evoke a variety of digital games beyond the software 
devoted to airplane navigation. To this adds the fact that DIDIREM, the alien team for this 
artifact has developed a DDA: Cassyopée very far from Cruislet , refers to theoretical frames 
quite different from those used by ETL, and experiments in a context that has proved to be 
especially constrained from an institutional point of view. Developing a comparative analysis 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX II 

122 

of the two designs and of their outcomes, making sense of the differences and similarities 
observed appears thus as an especially challenging but potentially insightful perspective. 

At the level of similarities, there is no doubt that the two teams are sensitive to the specific 
characteristics of Cruislet mentioned above, an especially its proximity with out-of-school 
technology. They consider it important to define an educational goal taking this characteristic 
into account. This is visible in the tasks designed by the DIDIREM team, even if there are 
evident differences between the two experimentations. An explicit link is made during the 
exploration of Cruislet with the history of Greece and with touristic sites. Priority is given to 
open and realistic tasks from an out-of-school perspective (planning trips under constraints for 
avatars), but in the second experiment tasks are more presented in the form of challenges and 
games. Certainly the specific context of this second experiment (a university workshop where 
mathematicians have first to show that mathematics can be much more attractive and diverse 
that what students experience in schools) contributes to it. This is also visible in the ETL 
design of tasks. The tasks are based on the idea of the "Guess my function" game, in order to 
provoke children to discuss, compare and experiment with dependence relations such as linear 
functions. Emphasis has been given to build game play activities involving navigation within 
the 3d representational space giving distance from the traditional structure of the mathematics 
curriculum. The intention was to involve students in activities through which they would use 
symbols, make and verify hypotheses in order to solve a particular real problem in a rich 
learning environment. In that sense mathematics is put to use to resolve game like tasks.  

The characteristic features of Cruislet and the distance it presents with most DDAs including 
those experimented in TELMA also makes anticipation of students behavior and possible 
cognitive outcomes more difficult. It is interesting to notice that this difficulty does not affect 
the two teams in the same way, and that this difference can be linked to the theoretical 
approaches they respectively rely on. ETL team seems quite at ease with such a situation, and 
coherently with the constructionist perspective it relies on, does not fix precise mathematical 
goals but investigates what spontaneously emerges from the students’ interaction with the 
DDA and tries to make sense of it. For the DIDIREM team, the situation is not exactly the 
same. This group has developed a vision of design inspired by TDS and didactical 
engineering. In such a perspective, the anticipations made in the phase of analysis a priori 
play a major role in design. The design tries to control and optimize the characteristics of the 
interaction between the students and the milieu, including here the DDA, through a careful 
choice of the didactic variables of the tasks proposed to the students and their management. 
The design also tries to anticipate what can be an optimal sharing of mathematical 
responsibility between the students and the teacher, and what didactic decisions can help 
maintain this optimal situation if difficulties appear. Such anticipations were difficult for the 
first experiment all the more as researchers and teachers were just discovering the version of 
Cruislet to be experimented, its potential and limitations. The difficulties met in the first 
experiment, the permanent interventions of the teachers in order to restore the expected 
dynamics for the classroom situations, the feeling of dissatisfaction that this first experiment 
generated can be partly explained by these differences in the conception of design. It is worth 
noticing that the experience gained in the first experiment made the context different for the 
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second experiment. The sharing of responsibilities was more realistically anticipated leading 
to a design where collective discussions, collective and group solving of tasks was distributed 
in a more sophisticated way, and where the tasks themselves were more accessible. 

Another interesting point from a theoretical point of view is the way the institutional 
sensitivity impacted the design of the DIDIREM team. As expressed above, this sensitivity 
can be expressed in ecological terms. In order to make the use of Cruislet possible in a 
realistic context, a habitat and a niche had to be found. The distance with the mathematics 
curriculum made the ordinary classroom context an impossible habitat in the French highly 
constrained system. But the philosophy underlying the system of projects called TPE 
(associating mathematics and other school disciplines knowledge for approaching issues of 
more general interest with some freedom with respect to syllabus constraints) seemed 
compatible with Cruislet spirit. Thus the DIDIREM choice. The three sessions organized had 
to familiarize the students with Cruislet in order to make them able to develop a project 
around this DDA. They had also to attract some of the students to the idea of choosing 
Cruislet as a support for their project. These conditions explain the selected educational goals 
and modalities of use. This institutional sensitivity also explains the intertwining in the design 
between out-of-school ingredients, open and exploratory tasks, and the reinvestment of 
specific notions such as vectors and trigonometry. Once more the comparison with ETL is 
interesting. The description made by the ETL researchers of the current functioning of the 
educational system and of their position shows that their concern is not to find a habitat and a 
niche for Cruislet in the system but to use Cruislet as a tool for questioning or even suggesting 
changes to the system. Once more this can be related to their theoretical perspectives. From a 
constructionist’s point of view, the functionalities of the new digital media such as Cruislet 
provide a challenging learning context where the different mathematical concepts and 
mathematical abilities are embedded and interconnected. The role of the teacher becomes 
crucial in designing mathematical tasks where students’ enactive explorations will reveal 
these mathematical notions and put them under negotiation. In the case of Cruislet, 
navigational mathematics becomes the core of the mathematical concepts that involves the 
geographical and spherical coordinate system interconnected with the concept of function and 
the visualization ability. 

But these theoretical perspectives themselves cannot be considered independently from the 
context. As pointed out above, the French system for instance seems much more constraining 
than the Greek system where a culture of continual search for reform is prevalent.  

Another element interesting is the differences in the way the two teams analyze the learning 
potential of Cruislet, and select the mathematical objects and representations they will focus 
on. For DIDIREM researchers, vectors and angles are the main mathematical objects. This is 
not surprising as angles and vectors are the most evident mathematical objects in Cruislet. For 
DIDIREM, angles in Cruislet offer interesting opportunities enriching those usually offered to 
students. Angles are immerged in 3D geometry and linked to spherical coordinates. 
Conversely this situation adds complexity to their manipulation all the more as French 
students are only used to manipulate angles in 2D geometry. The use of trigonometry for 
preparing flights under constraints for instance needs to situate angles in adequate planes, 
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which was very difficult for most of them. Regarding vectors, the first analysis made by 
DIDIREM researchers of their implementation in Cruislet pointed out the limitations of this 
implementation. Vectors could be only added and multiplied by integers, thus the vectorial 
structure was only partially accessible. This made impossible to propose students some quite 
realistic tasks that had been a priori envisaged such as those where wind effects affected the 
trajectory of an avatar. Another mathematical potential entered the scene later on due to 
exchanges with the ETL team. This team proposed a program for an acrobatic flight and this 
opened new perspectives to DIDIREM researchers: using Logo programming for enriching 
the students’ vision of curves with a differential perspective based on the properties of 
curvature. This went clearly beyond the school curriculum but seemed easily accessible. Due 
to the lack of familiarity of French students with programming activities, it was decided to 
propose them first a program they would have to execute and interpret, and then ask them to 
change the program in order to generate different curves. In fact, in the first experiment the 
initial activity was transformed by the teachers into a program associated with a triangular 
trajectory in a horizontal plane, that the students had then to adapt into a program for a 
triangular trajectory into a vertical plane, and the accent was put on the understanding of the 
iteration process. The differential perspective was reintroduced in the second experiment and 
the results obtained evidenced its accessibility to young students.  

The choices made by ETL are quite different as the focus is on the functional relationships 
between two airplanes’ relative displacements. ETL researchers consider navigation as a 
dynamic function event. The function’s independent variable is the geographical coordinates 
of the position of the first aeroplane, which students are asked to navigate, while the 
dependent variable is the geographical coordinates of the position of the second aeroplane. 
ETL team consider that the exploitation of the provided linked representations (spherical and 
geographical coordinates), as well as the functionalities of navigating in real 3d large scale 
spaces could enable students to explore and build mathematical meanings of the concept of 
function within a meaningful context. Function is seen as systematic mathematical co-
variation between specific coordinate values (x,y,z displacements or changes to r,phi,theta 
values). The realistic nature of the domain of these functions adds to the potential for students 
to generate meanings pertaining to domain and to functions which may provide a realistic 
game (e.g. it would be difficult to follow flights connected with quadratic functions).  

 

 

 

 


