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Appendix 1: the six ReMath DDA profiles and the NETLOGO 
profile 

I. Aplusix epistemological profile 

1. Objects 

What are the main objects represented and manipulated by/with the DDA? 
 
1.1 Framework 
Aplusix uses a general notion of expressions which includes equations, inequations and systems. 
The current framework of Aplusix has two major features: real numbers and exact calculations: 

- Numbers are considered as elements of R (set of real numbers), variables have values in 
R, solutions of equations, inequations and systems are searched in R; 

- Aplusix and the user only perform exact calculations. 
 

1.2. Objects: Algebraic expressions with a usual representation 
Representation: usual two-dimensional representation 
Syntax: syntax is checked by the system. 
Creation of objects: an object can be created by the user and the system. 
Manipulation: totally WYSIWYG with direct manipulation 
Computational:  

- User’s computations are free and are checked as correct or not  
- Computer computations are performed on user’s request 

Curriculum: totally compatible 
 
1.3 Objects: Algebraic expressions with a tree representation 
Representation:  

- First form: tree representation with operators in internal nodes and variables and numbers 
in leaves 

- Second form: mix- representation (combination of usual and tree with expand/collapse 
commands) 

Syntax: syntax is checked by the system. 
Creation of objects: an object can be created by the user and the system. 
Manipulation: totally WYSIWYG with direct manipulation 
Computational: User’s transformations of a representation into another are checked as correct or 
not  
Curriculum: innovative 
 
1.4 Objects: Graphical representations 
Representation:  

- Graphical representations of expressions of one variable are represented in a plane 
- Graphical representations of equations and inequations of one unknown are represented in 

two spaces: 
o In a plane where f=g is represented with a curve of f and a curve of g 
o In a line where the solution set of f=g is represented 
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- Graphical representations of systems of linear equations of two unknowns are represented 
in two spaces: 

o In a plane where each equation is represented with a line 
o In the same plane where the intersection of the lines is represented as a set of 

solution. 
Creation of objects:  

- a curve can be created only by asking the system to draw a curve of an expression, 
- dynamicity: when the expression is modified, the curve representing it is updated. 

Manipulation: colour, thickness, position (which curve is behind) and zoom can be chosen by the 
user.  

- Computational: User’s transformations of a representation into another are checked as 
correct or not  

Curriculum: totally compatible. 
 
1.5 Objects: Numbers, Variables, Polynomials, Functions, Equations, Inequations, Systems 
All these objects are considered and manipulated through algebraic expressions and curves 
 
1.6 Concept: Denotation, equivalence, correct calculations 
Algebraic expressions have mathematical objects as denotations:  

- Numerical expressions have functions as denotations, 
- Equations, inequations and systems have sets of solution as denotations. 

Two algebraic expressions are equivalent if and only if they have the same denotation. 
The main reasoning process is “reasoning by equivalence” where correct calculations lead to 
equivalent expressions. 
Manipulation:  

- The equivalence between the two expressions of a user’s calculation is shown by the 
system for each calculation step, 

- The interpretation of the feedback signs related to checking equivalence between two 
expressions is left to the user (and his/her teacher). 

Computational: The computation of the equivalence is done by the system.  
Curriculum:  

- Correct calculations is an element of any curriculum, 
- Equivalence is explicit or not, depending of the curriculum, 
- The notion of denotation is probably implicit in any curriculum. 

 
1.7 Concept: algebraic expressions are intermediate objects between strong mathematical objects 
they represent (their denotations) and their concrete representations on media: 

- Algebraic expressions can be represented in their usual form, 
- Algebraic expressions can be represented in a tree form. 

Manipulation: The fact that two representations represent the same expression is indicated by the 
system at the end of exercises of the type “Write a tree/usual form of this usual/tree expression”. 
Curriculum: The notion of multiple representations of an algebraic expression is probably absent 
of all curriculums.  
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2.  Connections 

 
Figure 1. Link between different sets of objects and representations spaces. Graphical representations, not 
in the figure, are concrete high level objects. Arrows mean “represent”. 

3. Activities 

Aplusix DDA offers at least 4 kinds of activities: 
(1) Formal exercises of numerical or algebraic calculation (ex. calculate a numerical 

expression, solve an equation, develop, simplify or factor an algebraic expression…). 
These are, in Duval’s terms, treatment tasks in the usual (or tree) register of 
representation. 

(2) Word problems, which can be considered as modelling tasks. 
(3) Exercises of conversion of given expressions between usual and tree registers. 
(4) Exercises where a task is to explore relationships between two expressions without 

equivalence feedback by using the graphical representation of the expressions 
(exploration task). 

 
How the objects and connections favour this kind of activities? 

(1) Formal exercises are defined in the DDA, which enables the system to recognize the types 
of exercises and check the appropriateness of the solving process.  

High abstract level 
Denotation set, e.g., set of real 
functions of one variable. 

x  x²-4 

Intermediate and abstract level 
Set of algebraic expressions, e.g., 
numerical expressions of one 
variable. 

x²-4 (x-2)(x+2) 

1st  concrete 
representation: 
usual 
representation

2nd concrete 
representation: 
tree 
representation

x²-4

-

^ 4

2x

means “represent”
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(2) Specific exercise editor allows creating word problems whose solving is based on 
producing and transforming algebraic expressions. The author of the exercise defines the 
nature of the expected answer and the way the student’s solution is compared to it, which 
enables the system to check for the correctness of the student’s solving process. 

(3) Conversion tasks of the type “Write a tree/usual form of this usual/tree expression” have 
been defined with the implementation of the tree representation in the system (cf. 1.7 
above).  

(4) Exploration tasks are favoured by the possibility to represent given expressions in usual 
and graphical representations at the same time and by real-time updating of graphical 
representations when usual representations are modified. 

 
Are these activities compatible with existing curricula and practice, or are they innovative? 

(1) Formal exercises are traditional school algebra exercises, completely compatible with 
curricula and practices. 

(2) Modelling tasks are also traditional exercises completely compatible with curricula and 
practices. 

(3) Tree representation of expressions in not yet a curricular object in France, although recent 
mathematics curricula for junior high school mention a tree representation and its 
articulation with usual and natural language registers as a means to help students 
distinguish between procedural and structural aspects of expressions. Nevertheless, this 
type of task is not yet compatible with school practices.  

(4) In school algebra, graphical representations of expressions are mainly used in solving 
equations, inequations and systems, but never to check equivalence between expressions. 
In this sense, the exploration tasks articulating usual and graphical registers in Aplusix are 
compatible neither with the curricula nor the practices. 

4. Pedagogical/intervention agenda 

1. Innovation vs acceptance - where does the DDA design stand?  
Aplusix brings innovative aspects to the teaching and learning algebra by enabling interactions 
between different registers of representations of algebraic expressions, which responds to the 
general requirements of French mathematics curricula to articulate different representations of 
mathematical objects. The software can be considered as highly acceptable since most tasks it 
offers are compatible with the curricula. 
 
2. Distance to traditional curriculum - where does the DDA design stand?  
For the above mentioned reasons, Aplusix is rather close to traditional curriculum although it 
proposes some types of tasks (exploration tasks) that are not compatible with it. 
 
3. Status of representations traditional, innovative, to be handled, related to others etc  
Representations of algebraic expressions in Aplusix are traditional. The innovation lies in the 
possibility of their direct manipulation by the user and in the possibility to have simultaneously 
two different representations of a same algebraic expression at one’s disposal. 
 
4. Scope for mathematization or only about mathematics? 
The scope of Aplusix is both for mathematization through modelling tasks and about 
mathematics through the other types of activities. 
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II. Casyopée epistemological profile 

1. Objects 

Casyopée’s two main objects are 
1. “algebraic functions”  
2. “geometrical dependencies”.  

A “function” is defined by a formula and a domain. The formula involves a function variable and 
possibly parameters. Casyopée provides means for creating sets of ordered real numbers, possibly 
including parameters, in order to define domains. 
The parameters can be treated both formally and numerically by way of animation. Constraints 
can be set on parameters in order to adapt to all situations: for instance if the parameter is 
intended to model a measure, it can be defined as positive. 

The main capabilities relative to “algebraic functions” are: 
 In the “symbolic window”  

- calculations (e.g. expanding or factoring formulas, integrating or differentiating functions, 
solving equations…);  

- graphic representations (with different functionalities such as zooming, changing axis 
scales…);  

- numerical or formal values (such as particular values or limits);  
- proof capabilities (theorem are available inside Casyopée that the user can apply to 

functions in order to prove signs or extrema or variations or zeros);  

In the Dynamic Geometry window 
- geometrical representations (curves) 
 

“Geometrical dependencies” exist in figures of the Dynamic Geometry window. They can exist 
as covariation between geometrical objects, as covariation between measures and as functional 
dependencies between measures. The main capabilities to create figures and study geometrical 
dependencies are: 

- geometrical constructions including free points; Casyopée’s algebraic objects –functions, 
expressions and parameters- can be used.  

- creation of geometrical calculations (well-formed formulas involving measures and 
symbolic objects); 

- numerical explorations of geometrical calculations;  
- choice of a measure as an independent variable for studying functional dependencies 
- numerical explorations of functional dependencies;  
- “exportation” of these functional dependencies into the symbolic window: Casyopée 

computes a domain and a formula and creates the corresponding “algebraic function”.  

The central concept in Casyopée is ”mathematical function of one variable”. This concept is seen 
through complementary aspects: 

- dependencies in a physical system. In, 2D geometry is the physical system that has been 
chosen. Dependencies can concern geometrical objects and measures (lengths, areas…). 
Dependencies between measures can be explored as co variations (simultaneous 
variations against time) or as functional dependencies: Casyopée offers means to choose 
an independent variable for the latter case,. 

- real function of a real variable with  
o standard mathematical representations 
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 Algebraic formula and domain 
 Graph and curve 
 tables 

o equivalence (same domain, and equivalent formulas) 
o properties (sign, growth) that constitute opportunities for problem solving and 

proof.  
This view of functions is encouraged by the curriculum, but impossible to address properly by 
most students with paper-pencil or existing (dynamic geometry or CAS) software. In this sense, 
the representations are curriculum compatible and innovative. 

2. Connections and Activities 

The grid of table 1 explains how the objects and representations are connected in Casyopée and 
what are the activities aimed at. The rows refer to the above aspects of the notion of function, 
distinguishing dependencies between geometrical objects and between measures. 

The columns refer to different representations of concepts in calculus. They separate 
representations of dependencies between two elements that can be thought of enactively or from 
images or approximations (enactive-iconic), and those that imply an explicit exact expression and 
thus an algebraic language. “Explorative” activities with ‘enactive-iconic’ representations 
involve experience of dependencies in a dynamic figure, as well as work on numerical values of 
measures, and ‘explorations’ on graphs and tables of approximate values. These activities involve 
complex semiotic systems with rich connections. With regard to dependencies between 
geometrical objects, dragging points and naming particular elements in the figure (for instance 
segments representing either the domain, on which the independent variable varies, or the range, 
on which the dependent variable varies) offer a first semiotic system. Then the dependencies 
between magnitudes offer an opportunity to speak of properties of dependencies (increasing, 
decreasing, reaching an extremumm) in a more numerical way. Finally observing the graph of a 
corresponding mathematical function, the dependency is explored and spoken of in the more 
standard language of domain, values, shape (parabola, straight line)…  

Activities in the three other columns involve the algebraic language. Student activities in algebra 
have been classified by Kieran (2004) into three categories: generational, transformational, and 
global / meta-level that correspond these columns: “The generational activities of algebra involve 
the forming of the expressions and equations that are the objects of algebra (...). The 
transformational (rule-based) activities include, for instance, collecting like terms, factoring, 
expanding, substituting (…) The global / meta-level mathematical activities include problem 
solving, modelling, noting structure, studying change, justifying, proving, and predicting.”  
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Representa-
tions 

Enactive-
Iconic Algebraic 

 
Types of 
activities Explorative Generational Transformational GlobalMeta 

Objects 
represented 

Dependencies 
between 
geometrical 
objects 

Exploration: 
various 
shapes in the 
figure 

  

Using 
parameters to 
create 
generic 
figures 

Dependencies 
between 
magnitudes  

Exploration 
of numerical 
dependencies

Introducing 
‘geometrical 
calculations’  
Choosing a 
variable

 
Working on 
‘generic’ 
dependencies 

Mathematical 
Function 

Local trace 
of graph of 
the function, 
global 
recognition 
of the graph

Getting an 
algebraic 
formula and 
a domain as a 
model 

Operating 
transformations, 
finding an 
algebraic proof. 

Working on 
‘families’ of 
functions 

Table 1 

Casyopée provides specific means to connect generational and enactive-iconic activities at the 
level of magnitudes: after independent and dependent variables have been built and chosen using 
a formalisation specific to magnitudes, Casyopée can “export” a dependency into the symbolic 
window, creating the corresponding “algebraic function”. Meaning can develop from this 
connection: considering an algebraic expression (domain and formula) for a function is motivated 
and takes sense when the function is conceived as a model of an enactive phenomenon.  

Transformational activity is a domain where Casyopée helps the student thanks to the underlying 
symbolic kernel. 
Rich connections exist between transformational and enactive-iconic activities. For instance 
students can connect the notion of equivalence, central in the transformational activities with the 
coincidences of graphs.  

Global-Meta activities include using algebraic means to express generality. Casyopée offers 
parameters for that. It helps to connect global-meta and enactive-iconic activities by treating 
parameters both formally and numerically by way of animation. General objects involved in a 
‘generic’ geometrical dependency are expressed by using parameters: for instance arbitrary points 
in a geometric figure, different from free points, are expressed as coordinate points involving 
parameters; a general circle is defined with a radius depending on a parameter. The enactive-
iconic exploration involves then two different gestures: dragging a free point helps to explore a 
particular dependency while using sliders to animate the parameters contributes to the exploration 
of a family of dependency. The algebraic model of the dependency computed by Casyopée is a 
family of functions, that is to say a function whose domain and formula depends on formal 
parameters. With regard to semiotics, students identify two different literals (parameters and 
function variable) as corresponding to two different gestures of exploration. Using the model to 
solve a problem in the physical system brings together algebraic formal treatment of parameters 
and the enactive-iconic interpretation of their values: for instance students compute the maximum 
of the function modelling a dependency in a figure and get a value depending on parameters, then 
they interpret this value as a ‘generic’ position of a free point. 
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Are these activities compatible with existing curricula and practice, or are they innovative? 

The links between the algebraic and enactive-iconic representations allowed by Casyopée are a 
foundation for activities connecting the semiotic systems elaborated for expressing dependencies 
and the algebraic language. All these activities are recommended by existing curricula, but not 
realistic without technology. 

3. Pedagogical/intervention agenda 

1. Innovation vs acceptance - where does the DDA design stand?  
Casyopée’s dynamic interface has been designed for easy use by the students: no specific syntax 
is needed. However, teachers can be surprised if they are used to CAS command driven interface. 
Also, because of the link with the symbolic window, dynamic geometry window’s constraints 
can be surprising for teachers used to numerical dynamic geometry environments. 
 
2. Distance to traditional curriculum - where does the DDA design stand?  
As explained above, Casyopée is compatible with the curriculum. It aims to make the curriculum 
feasible rather than to change it. 
 
3. Status of representations traditional, innovative, to be handled, related to others etc  
Computational representations in Casyopée try as much as possible to be consistent with 
‘standard’ mathematics. 
 
4. Scope for mathematization or only about mathematics? 
Modelling (a typical mathematization process) is central in the Casyopée extension. Casyopée 
helps also doing mathematics. 
 
Kieran, C. (2004). The Core of Algebra: Reflections on its Main Activities, in Stacey et al. (eds.), 

The Future of the Teaching and Learning of Algebra: the 12th ICMI Study. Springer 2004  
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III. ALNUSET epistemological profile 

1. Objects 

The mathematical objects of reference for Alnuset are : 
 Variables, unknowns and parameters 
 Algebraic expressions and polynomials 
 Algebraic propositions 
 Numerical sets  
 Functions 

 
Representations 

Here we describe how the mathematical objects of reference are represented in the three 
environments of Alnuset and how their representations can be manipulated by the user. 

 
Algebraic Line 

Exploiting the digital technology, the number line has been enriched with the possibility to 
directly manipulate mobile points associated to letters dragging them along the line. According to 
the way the mobile point is acted with respect to the task at hand, it can assume respectively the 
role of variable, unknown and parameter in a quite transparent way.  
Algebraic expressions and polynomials are associated to points on the line whose positions 
depend both on the position (on the line) of the letters that are contained in their form and on the 
structure of operations that characterize their forms.  
When the user drags the mobile point of a letter, the computer refreshes the positions of the 
points associated to the expressions or to the polynomial containing such a letter, in an automatic 
and dynamic manner. 
 

The drag of the variable 
x determines the 
dynamic movement of 
the expression 
containing it  

 
We observe that a mobile point associated to a letter assumes the role of a variable when it is 
dragged along the line while it assumes the role of parameter when it is not dragged. 
Through a specific command of this environment it is possible to find the roots of polynomials 
with integer coefficients. The root of a polynomial can be found by dragging the variable on the 
algebraic line in order to approximate the value of the polynomial to 0. When this happens, the 
exact root of the polynomial is determined by a specific algorithm of the program and it is 
represented as a new point on the line.  
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Algebraic propositions are represented in a specific window of this environment named “Sets” as 
associated to coloured markers that are under control of the system. The green/(red) colour of the 
marker of the proposition at hand means that the proposition is true/(false) for the actual value of 
the letter on the line.  
 

 
 

Through a graphical editor, it is possible to edit the truth set of a proposition.  

 
Once the truth set of a proposition has been edited, it can be validated by using a specific 
feedback of the system. At this regard we note that the numerical sets are associated to coloured 
(green/red) markers that are under control of the system. The green/(red) colour for the numerical 
set means that the actual variable value on the line is/(is not) an element of the set. Through the 
drag of the variable on the line, colour accordance between proposition marker and set marker 
allows the user to validate the defined numerical set as a truth set of the proposition (see figure 
below). 
 

  
 
We note that the mobile point associated to a letter assumes both the role of unknown (whose 
value makes the proposition true or false) and the role of element of a numerical set that can 
belong or not to a previously defined set 

 

 
Two open intervals on the line, respectively on the right 
and on the left side of the roots of the polynomial x2-2x-1, 
have been selected with the mouse. The system has 
translated the performed selection into the formal notation. 
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Algebraic Manipulator 

In this environment algebraic expressions, algebraic propositions and numerical sets can be 
manipulated formally through a set of basic rules that correspond to the basic properties of 
addition, multiplication and power operations, to the equality and inequality properties between 
algebraic expressions, to basic logic operations among propositions and among sets. Every rule 
produces the simple result of transformation that is reported on the icon of its corresponding 
command on the interface, and this makes easy the control of the rule and of its result.  

Moreover, this manipulator provides not expert users with cognitive supports in the development 
of specific manipulative skills. A first support is the possibility to explore, through the mouse, the 
hierarchical structure that characterises the expression or the proposition to be manipulated. By 
dragging the mouse pointer over the elements of the expression or proposition at hand (operators, 
number, letters, brackets…), as feedback the system dynamically displays the meaningful part of 
the expression or proposition determined by such pointer. In this way it is possible to explore all 
meaningful parts of an expression in the different levels of its hierarchical structure. Another 
feedback occurs when a part of expression has been selected. Through a pattern matching 
technique, the system, as feedback, activates only the rule of the interface that can be applied on 
the selected part of expression. This is a cognitive support that can be used to explore the 
connection among the transformational rules of the interface, the form on which it can be applied, 
and the effects provided by their applications. 

This figure shows a part of the 
commands available with the 
interface and an example of 
algebraic transformation.  
The figure shows a 
characteristic of the 
interactivity of this 
manipulator: the selection of a 
part of an expression 
determines the activation of the 
commands of the interface that 
can be applied on it. This 
characteristic can help students 
to explore the systems of rule 
for the algebraic transformation 
and the effects they produce 

 
Function environment 

The referential mathematical object of this environment is the function. 
This environment offers the possibility to connect the dynamic functional relationship between 
variable and expression on the algebraic line with the graphical representation of the function 
associated to the expression in the Cartesian plane. As a consequence, the interface of this 
component has been equipped with the Algebraic line and a Cartesian plane. This idea makes this 
component deeply different from other environment for the representation of function in the 
Cartesian plane. Through a specific command and the successive selection of the independent 
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variable of the function, an expression represented on the Algebraic line is automatically 
represented as graphic in the Cartesian plane. Dragging the point corresponding to the variable on 
the algebraic line, two representative events occur:  
 on the algebraic line, the expression containing the variable moves accordingly 

 on the Cartesian plane, the point defined by the pair of values of the variable and of the 
expression moves on the graphic as shown in the following figure. 

These representative phenomena support the integrated development of a dynamic idea of 
function with a static idea of such a notion. The functional relationship between variable and 
expression is visualized dynamically on the algebraic line through drag of the variable point, and 
statically in the Cartesian plane through the curve. The movement of the point along the curve 
during the drag of the variable on the algebraic line supports the integration of these two ideas, 
showing that the curve reifies the infinite couples of values corresponding to the variable and to 
the expression on the line. 
 

 
If the expression on the line contain more than a letter, only one can be defined as variable while 
the others assume the role of parameters. When the letter associated to a parameter is dragged on 
the line, the graph change according to the role of parameter assumed by that letter. 
 
Concepts: 

Here we describe some main concepts associated to the mathematical objects and the way the 
representations of Alnuset deals with them. We realize this description with respect to the three 
environment of Alnuset.  
 
Algebraic line  

In this environment the object algebraic expression is associated to different concepts such as the 
concept of equivalence between expressions, the concept of opposite expressions, the concept of 
reciprocal expressions.  
As far as the concept of equivalence between expressions is concerned, a specific representation 
deals with this concept. Every point represented on the line is associated to a post-it. The post-it 
of a point contains all the expressions constructed by the user that denote that point. The 
computer automatically manages the relation among expressions, their associated points and 
post-it. By dragging a variable on the line, dynamic representative events can occur in a post-it. 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX I 

13 

They are very important for the construction of the concept related to the equivalence between 
expressions. As a matter of the fact, the presence of two expressions in a post-it may mean: 

 A relationship of conditioned equivalence , if taking place at least for one value of the variable during 
its drag along the line  

 A relationship of equivalence, if taking place for all the values assumed by the variable when it is 
dragged along the line. 

 A relationship of equivalence with restrictions, if taking place for every value of the variable when it 
is dragged along the line, but for one or more values, for which one of the two expressions disappears 
from the post-it and from the line. 

 
As far as the concept of opposite expressions is concerned, their position on the algebraic line is 
“opposite” with respect to the point 0 during the drag of their variables. Moreover, their sum 
always belongs to the post-it of the point 0 during the drag of their variables. The experience of 
this invariance is crucial to understand the notion of opposite and to justify a fundamental rule of 
transformation (a+-a=0). 

As far as the concept of reciprocal expressions is concerned, the position on the algebraic line of 
their product always belongs to the post-it of the point 1 during the drag of the their variables. 
The experience of this invariance is crucial to understand the notion of reciprocal and to justify a 
fundamental rule of transformation associated to this notion (a*1/a=1). 

Working in this environment several concepts emerge as associated to the way propositions are 
represented and manipulated. The most important are the concepts of truth value of a proposition, 
of a truth set of a proposition and of equivalent propositions.  
The feedback of the system connected to the coloured green/red marker for propositions and sets 
during the drag of the variable is important to introduce the notions of the truth value and of the 
truth set of an algebraic proposition and to develop a discourse on their relationships.  
Moreover, this feedback is of great importance for the construction of the notion of equivalent 
propositions as well because it allows the user to understand that equivalent propositions are 
characterized by the same truth set. 
 
Manipulator environment 

The operative and representative characteristics of this algebraic manipulator support the 
development of an idea of algebraic transformation well framed from a conceptual point of view. 
The rules of transformation available in the interface are axioms of the theory of the algebraic 
transformation to be conceptualized. Once the student has realized a meaningful transformation 
that presents the feature of generality he can create a new rule of transformation to be used in 
successive algebraic manipulations. The new rule corresponds to a theorem that enriches the 
theory of transformation of reference for the activity.  
 
Function Environment 

The operative and representative characteristics of this environment support the construction of 
several concepts both of algebraic and functional nature. 
The dynamic functional relationship between variable and expression on the algebraic line with 
the graphical representation of the function in the Cartesian plane contributes to assign an 
algebraic meaning to the intersection of two curves (for the value of the variable that determines 
the intersection, the two expressions are contained in the same post-it on the algebraic line) or to 
the intersection of a curve with the x-axis (in this case the expression is contained in the post-it of 
0) 
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Other examples are related to the construction of meaning for the sign of a function (in terms of 
the position of the corresponding expression on the line with respect to 0), or to relationships of 
order among functions (in term of the respective position of the expressions on the algebraic 
line), or to the construction of a meaning for the notion of parameter.  

2. Connections 

Here we describe the different ways in which mathematical objects and their associate concepts 
can be connected using the different operative and representative possibilities of the three 
environment of Alnuset. 

a) Equivalence between algebraic expressions. 
In the algebraic line two equivalent expressions belong to the same post it during the drag of their 
variable on the line  
In the manipulator environment two equivalent expressions present the same structure through 
the algebraic transformation.  
In the function environment two equivalent expressions are associated to the same graph. 

b) Opposite expressions 
On the algebraic line two opposite expressions are “opposite” with respect to the point 0 during 
the drag of their variables and their sum always belongs to the post-it of the point 0 whatever the 
value of their variable are. . 
In the manipulator environment an expression A is opposite of the expression B if it is possible to 
prove that A= -B or that their sum is 0 
In the function environment the graph of two opposite expressions are symmetrical with respect 
to the x axis and the graph of their sum coincide with x=0 

c) Reciprocal expressions 
On the algebraic line the position of their product belongs always to the post-it of the point 1 
during the drag of the their variables. 
In the manipulator environment an expression A is reciprocal of the expression B if it is possible 
to prove that A= 1/B or that their product is 1 
In the function environment it is possible to visualize the graphs of the two reciprocal expressions 
and to verify that the graph of their product coincides with x=1  

d) Propositions 
On the algebraic line the solution of an equation or inequation can be performed using the 
operative and representative opportunities of the environment previously described  
In the manipulator environment there are more then one possibility to find the solution. Consider 
for example the solution of the equation x2+2=2*x+3 as reported in the following figure A, B, 
and C  
 
Figure A 

 

Figure B Figure C 
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The first solution (figure A) has been realized exploiting a command that imports into the 
manipulator the truth set of the equation previously defined in the algebraic line environment.  
The second solution (figure B) has been performed exploiting a command of the interface that 
factorize the polynomial on the basis of the its roots previously determined on the algebraic line 
(see the fourth step of the transformation) The successive steps of the solution have been realized 
rules of transformation of the interface.  
The third solution (figure C) has been performed only through a formal approach exploiting the 
above reported rule created by the user that he previously had demonstrated by means of the rules 
of the interface 
 

 
 
In the function environment the integration the dynamic functional relationship between variable 
and expression on the algebraic line with the graphical representation of the function in the 
Cartesian plane contributes to link the intersection between of the graphs related to x2+2 and 
3*x+3 (the two expressions are containing in the same post it) with the intersection of the graph 
of x2-2*x-1 with the x-axis (in this case the expression is contained in the post-it of 0) 
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3. Activities 

In the previous sections we have evidenced that the three environments of Alnuset offer different 
operative and representative possibilities to deal with the mathematical objects of reference for 
the system and their associated concepts . This can occurs because these operative and 
representative possibilities can be exploited to design proof and exploration activities of 
quantitative, symbolic and functional nature able to support the development of the capability to 
use these mathematical object and to construct appropriate meaning for them. 

The activities of quantitative nature focus on numerical quantities that a variable or a literal 
expression indicate in an indeterminate way or on the numerical quantities that condition the 
equality or the inequality of a proposition. They are mainly explorative and they are aimed 
mainly to construct meaning for algebraic concept associated to the mathematical objects 
involved in the activity The activities of symbolic nature focus on the rules system to 
symbolically manipulate algebraic expressions and propositions preserving the equivalence 
through the transformation. They are activities mainly oriented to prove conjectures previously 
constructed through explorative activities of quantitative nature. The activities of functional 
nature focus on the link between a variable and an expression containing it and on the different 
representations of such link to construct mathematical concepts or to model specific situations or 
phenomena to be interpreted. These different types of activities can be integrated among them 
within the didactical practice. The integration of these different types of activities can innovate 
the teaching of algebra, of functions and of numerical sets. For example the operative and 
representative possibilities of the algebraic line environment can be easily exploited to design 
explorative activities in the field of algebra or in the domain of the properties of numerical sets. 
The way in which the manipulator environment has been realized support the development of 
proof activities in a natural way. 

These explorative and proof activities of different nature can be introduced into the standard 
curriculum to improve the teaching and learning of mathematics. For example the 
experimentations performed in these two years have evidenced that explorative activities within 
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the algebraic line environment can be easily integrated in the standard curriculum to mediate the 
construction of abilities and of meanings of the algebra curriculum. 

Finally, we observe that the Alnuset operative and representative possibilities can be exploited to 
deeply innovate the curriculum of algebra. As matter of the fact they allow the teacher to change 
not only the way in which the contents of the current curriculum are taught but also the 
curriculum itself, namely what can be taught and the temporal sequence of what is taught.  

4. Pedagogical/intervention agenda 

The analysis of the Alnuset operative and representative possibilities realized both by Italian and 
French researchers has highlighted that they are rather different from those reported in school 
manual (think for example to the operative and representative possibilities of the algebraic line). 
Nevertheless they can be easily learned because they can be controlled on the basis of the 
perceptive, kinesthetic and spatial experience of the subjects. Moreover, the performed 
experimentations have demonstrated that the familiarization phase with these operative and 
representative possibilities is generally very short because they are very transparent with respect 
to the results that they produce and to the way they produce such results.  

Finally, the researchers have evidenced that the discourse to justify and to interpret them not only 
is compatible with the discourse of the school manual but it is strongly favored by the way in 
which the operative and representative possibilities of Alnuset can be controlled at the perceptive, 
spatial and kinesthetic level. In fact many operative and operative events can be metaphorically 
used to speak of the properties of the mathematical objects, processes and relations involved in 
the activity. Think for example to the use that can be done of the mobile point on the line to 
speak metaphorically of variable, unknown and parameter or to the use of the colored markers 
associated to algebraic propositions and numerical sets to speak metaphorically of truth of a 
proposition or of a truth set of a proposition. 
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IV. MoPiX epistemological profile 

1. Objects 

a) Time 

We identify time as a significant object within MoPiX as it is a parameter in all MoPiX equations 
and is essential to the animation of models, which takes place in time. Time is measured in 
discrete units and in Version 1 may only progress in a forward direction. It is started and stopped 
by clicking the play/stop button. On clicking the start button, the value of time is always reset to 
0. (Version 2.0 also includes buttons that allow time to be progressed stepwise in single units and 
to be run backwards or set to a specific value. This was not available during the teaching 
experiments.) 
 

b) Cartesian plane 

The MoPiX stage may be considered a Cartesian plane with points identified by pairs of x and y 
coordinates. The unit of measurement is a screen pixel. Conventional aspects of the 
representation of such a plane such as axes, grid, etc, are not present; there are thus no overt signs 
of its presence. On the other hand, the use of x and y variables within equations imply its 
presence. 
 

c) Equations/Functions 

Equations are represented in a way that is recognizably similar to but not identical to standard 
algebraic notation as used within the traditional curriculum. Components of equations include 
numbers, variables, parameters and functions. The form of variable, parameter and function 
names is not restricted as it is in conventional mathematical notation and meaningful names may 
be used as in computer programming paradigms. Primitives and non-primitive variables, 
parameters and functions appearing in the equations provided in the equation library have names 
that may be construed as motivated (Kress, 1993) (e.g. the primitive parameter t represents time; 
the primitive variable x represents the horizontal coordinate of a position in the Cartesian plane of 
the MoPiX stage; the non-primitive function Vx used in equations provided in the library may be 
interpreted as velocity in the x direction). MoPiX equations themselves may be considered to be 
closer to functions as they act in a computational way. 

There is scope within MoPiX Version 2.0 for other forms of representation to be incorporated 
into the equations, for example, natural language or icons. 
Equations may be edited or created in the Equation Editor. This treats algebraic expressions as 
tree structures depicted using containment (nested boxes) rather than nodes and links (Figure 1). 
When constructing a new equation, it is necessary to plan the overall structure of the tree in 
advance. Most terms are entered through the keyboard; operators and specialist terms (Arithmetic 
or Trigonometric function names, relations, logical connectors) are entered via a menu. 
Incompletely formed equations are displayed in red, turning black once well-formed. 
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Figure 1: Equation Editor (Version 2.0) 

A library of equations is provided. The user directly manipulates these in three ways: (i) by 
allocating them to physical objects (see below); (ii) by editing equations selected from the library 
within the editor; (iii) by creating new equations directly within the editor. 

The library is structured to group together and label sets of equations that are useful for particular 
purposes, e.g. horizontal motion; size; colour; multi-object equations. While some of these 
categories of equations are logical groupings of equations with equivalent functions (e.g. colour 
equations) others are more pragmatic groupings, providing sets of equations that, when used 
together, enable users to perform particular kinds of tasks (e.g. horizontal motion equations, 
graphing equations).  
In Version 2.0 the library has been enhanced to provide explanations of the equations. It also has 
the potential to provide student tasks with embedded equations that can be applied to physical 
objects and to allow users to extend the library by adding their own equations to it. 

The equations provided in the library are directly usable to allocate properties and behaviours to 
physical objects, but their scope is limited. To take a basic example, the library equation 
Vx(ME,t)=3, interpreted as assigning a value of 3 to the x velocity of a chosen object, is the only 
one of this form. If a user wishes to assign a different velocity, they need either to edit this 
equation or to create a new one of a similar form. The equations provided to the user may thus be 
considered as ‘half-baked’ in the sense that, in order to build any but the simplest of animations, 
the user must adapt them and/or construct new equations. 
 

d) ‘Physical’ objects 
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Figure 2: The motion of the red ball is dependent on the blue arm until t>60 

Rectangles and ellipses of various dimensions and colours may be created and manipulated on 
the MoPiX stage. We refer to these as ‘physical’ objects as they are generally used to represent 
material components of animated models representing ‘real world’ objects; they are not treated as 
geometric objects. 

When initially created, such physical objects have only an initial default size, shape and colour 
and a position defined by x and y coordinates within the Cartesian plane of the MoPiX stage. 
They are assigned other properties and behaviours by the equations added by the user. The user 
may also manipulate them directly by dragging. 
Physical objects may be programmed to be dynamic by assigning appropriate sets of equations. 
Change in position (or change in other properties such as colour) over time is explicit and 
controllable through the use of equations involving functions of time.  
Physical objects may also be programmed in ways that make the behaviour or properties of one 
object dependent on some property or properties of another object. This enables animations that 
simulate, for example, the movement of a ball bouncing off a racquet or being spun and then 
released by a rotating ‘arm’ (Figure 2).  

The creation of dynamic models within MoPiX is innovative in relation to the standard 
curriculum. However, depending on the objectives of the activities offered to students, the 
concepts encountered can be directly related to curriculum content. Thus, for example, a physical 
object can be programmed to behave as a projectile, engaging the student in working with 
concepts of velocity, acceleration and force. (While in some national contexts these concepts are 
part of the physics curriculum only, in the UK they are also studied within mathematics.) 
 

e) Traces of movement of physical objects 
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By adding an equation that sets the ‘pen’ of a physical object, a trace of the path of the object is 
created as it moves (Figure 3). Such a trace is not directly manipulable by the user but is the 
product of the behaviour of the physical object, though its shape can obviously be determined by 
programming the generating object to move in specific ways.  

 
Figure 3: Physical object with a trace of its motion 

The trace may be considered as both dynamic and static. It is produced dynamically over time as 
its generating object moves but it also remains on the screen as a static record of the path after the 
movement has stopped. 
It is possible to conceive of a trace as a graph of the y position of the generating object against its 
x position. It is also possible to create and programme further physical objects whose movement 
is related to that of a target physical object, creating traces that represent graphs of other aspects 
of the target object’s movement. For example, the x coordinate value of the graphing object can 
be set equal to t (time) while the y coordinate is set equal to, say, the vertical velocity of a target 
object, creating a graph of velocity over time (Figure 4).  

In this description we have distinguished ‘graphing objects’ from other physical objects. Within 
MoPiX terms, there is no distinction between these kinds of objects, although a basic set of 
equations used to program ‘graphing objects’ with a convenient scale has been provided in the 
equation library. The conceptual distinction arises only within the context of specific activities in 
which the trace of one object is defined and perceived as the graph of some aspect of its motion 
or that of another object. Such graphs are clearly related to the standard curriculum, though the 
environment does not provide explicit supporting annotations (axes, labels, etc.). 
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Figure 4: Four graphs traced by ‘graphing objects’ linked to aspects of the motion of a 'bouncing ball’ 

2. Connections 

The values of all equations/functions, and hence all attributes and behaviours of physical objects 
are dependent on time. 
The position and movement of physical objects is defined within the Cartesian plane of the 
MoPiX stage. 
Behaviours and appearance of physical objects are determined by the set of equations applied to 
the object.  

(i) Equations that set the values of primitive functions may act directly on the physical 
object. Thus, for example: applying the equation length(ME,t)=200 to a physical 
object sets the length of one dimension of the object to 200 units for all values of t; 
applying the equation x(ME,t)=x(ME,t-1)+Vx(ME,t) sets the value of the x coordinate 
of the physical object so that at each successive time point it is augmented by the 
current value of the function Vx (a non-primitive function generally taken to represent 
horizontal velocity). 

(ii) Equations that set the values of non-primitive functions only have an effect on a physical 
object when combined in a set of equations that serve together to define the value of a 
primitive function. For example, the equation Vx(ME,t)=3 has no effect if applied by 
itself. In conjunction with the equation x(ME,t)=x(ME,t-1)+Vx(ME,t), however, it 
augments the x coordinate of the physical object by 3 at each successive time point. 

While the equations all use a consistent semiotic system of formal symbolism, they effect 
changes in a range of aspects of the physical object, including: colour, size, shape, whether or not 
it leaves a trace (and the colour and thickness of that trace) as well as its position and the ways in 
which its position changes. 
Equations applied to one physical object can include reference to properties of another so that the 
behaviour of one object is dependent on the behaviour of others. This allows, for example, 
moving objects to interact. 
Equations may be used to set the ‘pen’ of a physical object. The sub-set of equations applied to 
the object to determine its motion will thus also generate a trace or graph of its path. The ‘natural’ 
user perspective on this occurrence is to perceive the motion of the physical object as the 
generator of the trace. 
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3. Activities 

MoPiX is conceived as a constructionist toolkit. The constructionist approach to learning (Harel 
& Papert, 1991; Kafai & Resnick, 1996; Papert, 1980) promotes investigation through the design 
of microworld environments, i.e. technology-enhanced educational tools and activities, and the 
observation of learners’ actions, developments and communication within these environments. 
As developed by Strohecker and Slaughter (2000) constructionist toolkits are dynamic visual 
environments that support building activities in social contexts. Learners build constructs with 
fundamental elements – in MoPiX these are equations applied to one or more objects - and then 
activate these constructions as a means of investigating their hypothesis. Working with MoPiX is 
thus intended to provide students with opportunities to explore and develop their understanding 
of equations and relationships within a Cartesian plane as well as to investigate the behaviours of 
the objects they construct. While it is possible to address standard curriculum content through 
such exploration, the approach is innovative. 
The process of connecting equations with the behaviour of physical objects is essentially a 
modelling activity. Unlike modelling within the usual curriculum, MoPiX modelling includes 
two levels of model. Like ‘usual’ modelling, students produce a set of equations that model a real 
world phenomenon (e.g. a ball bouncing). In MoPiX, however, the animation effected by 
applying these equations may itself be considered a model of the same phenomenon. By running 
this animation model and comparing its behaviour to that of the real world phenomenon, the 
student is provided with more direct feedback about the adequacy of the model than is normally 
available within the usual curriculum.  

4. Pedagogical/intervention agenda 

1. Innovation vs acceptance - where does the DDA design stand?  
2. distance to traditional curriculum - where does the DDA design stand?  
3. status of representations traditional, innovative, to be handled, related to others etc  
4. scope for mathematization or only about mathematics? 
 
1. The design of MoPiX is innovative in relation to existing curriculum and pedagogy. 
2. The distance of MoPiX to the traditional curriculum is dependent on its mode of use and the 
specific activities offered to students. This is illustrated by the difference between the two 
teaching experiments carries out in ReMath. In the IOE experiment the pedagogical plan was 
structured according to topics met in the standard curriculum. Although the nature of the 
activities with MoPiX were very different from those normally used, the mathematical learning 
objectives were similar and the students’ experience was intended directly to support their study 
within the standard curriculum. In the ETL experiment, on the other hand, the pedagogical plan 
was not directly connected to the standard curriculum.  
3. The equations, variables, parameters and functions in MoPiX are recognisably connected to 
representations used within the traditional curriculum, though the use of motivated variable and 
function names is noticeably different. The way in which users handle these objects in the 
Equation Editor is very different from within a paper-and-pencil. In particular, the overall 
structure of an equation has to be created before specific elements are entered into it. 
Equations are used to express appearances, behaviours and relationships and, in contrast to 
traditional use of equations, are not solved within MoPiX (though could be exported to another 
DDA for solution). 
The representation of the Cartesian plane is compatible with standard representations, though 
lacking visible markers that might help users to recognise its presence. 
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4. Using MoPiX is primarily about mathematising, e.g. building a mathematical model and 
animated representation of a physical behaviour such as a bouncing ball. 
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V. MaLT epistemological profile 

1. Objects  

The objects in the MaLT environment are classified in two main categories -Level 1 and Level 2- 
according to if they constitute primary, intrinsic in the environment, objects or secondary, user-
constructed ones. The Level 1 objects are the turtle, the trace it leaves inside the Scene, the three 
variation tools, the logo commands and procedures, the coordination system and the ready-made, 
inserted by the user, objects. It was a pedagogical and epistemological decision not to portray the 
3D objects (scene, turtle, trace, ready-made objects) as representations of abstract mathematical 
objects (i.e. the thinnest line possible for trace, an abstract representation of the turtle object). 
Instead we decided to portray them as simulations of real objects and let the learning situation, 
social orchestration and tasks provide the context for dissociation from the ‘tangible’ to the 
abstract notions of entity (turtle), position and segments. Correspondingly, we included a 
sequence of different scene backgrounds so as to have a choice of cues to making connections 
with 3d space. Level 2 objects are the Turtle constructions, graphically represented in the 3d 
Scene in the form of 1d, 2d or 3d geometrical figures. The Level 2 objects are considered to be 
secondary in the sense that they are the result of the combined use and manipulation of the Level 
1 objects. However, this doesn’t mean that, in order to construct a Level 2 object, the user has to 
employ all of the objects found in the Level 1 category.  

The Level 1 Objects 
f) The Turtle 

The Turtle in the MaLT environment is a 3d programmable object resembling in appearance to a 
real turtle. Through Logo commands and procedures the turtle can be driven around inside the 
Scene’s 3d space, leaving behind a trace for each one of its logo defined displacements. The state 
of the turtle (position and heading) can be defined at any time in relation to its difference from 
the immediately previous state, which directly correlates to the essence of differential geometry. 
Thus, any change in the turtle’s state is considered to represent a vector in the 3d Scene.  
g) The Turtle Trace 

The trace the turtle leaves when moving inside the Scene is represented as a thin 3d cylindrical 
line. When it is produced by a logo procedure that includes at least one variable (e.g. To rectangle 
:a :b :c), the turtle trace becomes selectable and transforms form static to dynamic. Clicking on it 
causes the 1d and the 2d Variation Tools to activate and appear on environment’s interface (the 
3d variation tool - VVT - activates through the 1dVT only if the procedure includes at least three 
variables). Appropriate dragging in each variation tool erases and re-executes the respective 
procedure with the new value(s) resulting in a DGS-style effect on the constructed figure.  
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Figure 1: The 3d turtle and the trace it leaves behind in each one of its displacements 

 

h) The Logo Commands and Procedures 

By running Logo procedures and commands at the Logo Editor the user may construct 1d, 2d or 
3d figures in the Scene using the Turtle’s displacements, create and manipulate stereometric 
objects (e.g. cylinders, spheres and cones), and control the Scene’s camera so as to change the 
selected viewpoint.  
The Logo procedures that control the Turtle’s displacement inside the Scene may include 
variables whose values are determined either at the Editor as the user runs the procedure or 
dynamically through the manipulation of the Variation Tools. The Logo procedures in MaLT can 
be used to create new primitives as well as recursive procedures. Apart from Turtle 3d graphics 
commands, the MaLT Logo also includes commands for Flow Control, Data Structures, 
Workspace Management and Mathematical Operations.  
The syntax of the Logo language is aligned with the syntax of the standard mathematical 
formalism in the usual way. However, there is a difference to standard Logo syntax (due to the 
fact that Logo is a compiler so as to gain speed of response to the variation tool manipulations). 
Inputs to procedures need to be in brackets.  

i) The three Variation Tools (1dVT, 2dVT and VVT) 

The MaLT Variation Tools provide users the opportunity to dynamically manipulate: 
I. the values of the variables in a Logo procedure (Manipulation level 1). 

After typing a variable procedure in the Logo Editor and in order to make the turtle 
appear and move inside the Scene, the user in MaLT must run the procedure at least once, 
attributing specific numerical values to each of the procedure’s variables. Manipulating 
the Variation Tools, the user changes the values of the variables, causing the procedure to 
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run once again taking into account the new values that appear on the Variation Tool. As 
the time needed for the MaLT environment to run again the procedure is substantially 
little, the user may constantly change the values, dynamically manipulating in this way 
the procedure’s variables. 

II. the figure generated in the screen by the variable procedure (Manipulation level 2). 

A change in the values of the variables through the use of the Variation Tools causes the 
Logo procedure to be run again taking into account the new values and the geometrical 
figure in the Scene to regenerate from scratch. The powerful 3d game engine behind 
MaLT allows the Scene to respond fast and effectively to any dynamic manipulations 
performed. Thus, the user may manipulate the Variation Tool in a way that the values 
change in a continuous way, causing the figure to change dynamically. 

The three available variation tools are the Uni–dimensional Variation Tool (1dVT), the Two–
dimensional Variation Tool and the Vector Variation Tool (VVT). 
 The Uni–dimensional Variation Tool (1dVT): The 1dVT appears just below the Logo 

Editor, only after the user runs a Logo procedure that includes at least one variable and 
clicks on the trace the turtle has left behind after constructing the graphical outcome of the 
procedure in the 3d Scene. It consists of “number line”–like sliders, each of which 
corresponds to one of the variables used in the Logo procedure. A pointer on the slider 
indicates the current value of the corresponding variable. Dragging the pointer the values of 
the variable change sequentially, causing the figure to change dynamically. Apparently, 
what is manipulated is not the figure itself, but the value of the Logo procedure’s variable. 
The user may also define the step of the variation as well as the range of the variation. 

 
Figure 2: The 1d Variation Tool (1dVT) 

 The Two–dimensional Variation Tool (2dVT): The 2dVT allows the co–variation of two 
variables at the time. Thus, it requires a Logo procedure that includes at least two variables. 
It is activated through the 1dVT, after selecting two variables and defining which one will 
be represented in which axis (the X or the Y). The 2dVT is in the form of an orthogonal 
pad on which the mouse can be freely dragged, leaving behind a trace. Each position on the 
pad (x,y) corresponds to a specific value for each of the selected variables. The changes in 
the mouse’s position cause respective changes to the 1dVT' sliders’ values as well as to the 
figure in the Scene. The 2dVT is used not just to represent a relationship but mainly to 
define and implement one. 

The procedure’s 
variables 

The Logo 
procedure 

Dragging the pointer causes 
the value of variable “A” to 

change sequentially 

The initial values 
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Figure 3: Creating the f(x) = x functional relationship between the two variables. 

 The Vector Variation Tool (VVT): The VVT allows the co–variation of three variables by 
using two 2d representations of a vector defined by these variables according to an (r, φ, θ) 
polar semantic in the 3d space. The VVT requires a Logo procedure that includes at least 
three variables and is activated when clicking on the icon next to the 1dVT. A pop–up 
menu appears so as for the user to select which variable will to correlate to r, φ and θ (r 
stands for length, θ for the angle between the vector’s projection on the xz plane and the z–
axis and φ for the angle between the vector and the xz plane). The three variables’ values 
can be manipulated by dragging and rotating vectors in the VVT window that appears. 

In the window appear two vector–like representations (the constituent projections) and a 
resultant vector representation (1st window compartment). Using the first vector–like 
representation (2nd window compartment), the user can dynamically manipulate the 
vector’s length and rotate it to control the value of angle θ. Using the second vector–like 
representation 3rd window compartment) the user can manipulate the vector’s length and 
rotate it to control the value of angle φ. The changes performed on the two vector–like 
representations are reflected on the resultant vector representation, which is not available 
for direct manipulations. 
The VVT displays both polar and Cartesian values. The polar values are represented 
graphically by the vector itself and numerically in the corresponding text boxes. The 
Cartesians are represented graphically by the vector’s projections on the two axes planes 
and numerically in the text boxes. 
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Figure 4: The Vector Variation Tool (VVT) 

j) The ready-made objects 

The Property Editor in MaLT is a component is designed to provide the user a library of ready–
made objects which she may insert in the Turtle Scene and manipulate them either dynamically 
or by editing their properties using the Editor’s corresponding value fields. The user may select 
from a variety of ready–made objects, such as: spheres, cylinders, cones, pyramids, cuboids, 
canonical prismatic, canonical polygons, line segments, circles and planes. 
The user before inserting the object may define in the Editor the values of certain of its properties 
(e.g. the Colour and Transparency). The properties, however, to be defined are not the same for 
all the types of objects. Other kinds of properties that may appear are the: Radius, Height, Sides, 
Length, Width, Length of diagonal, Centre, Point and Position (X, Y, Z). Apart from the Property 
fields whose values are defined by the user, there is also a set of fields whose values are 
calculated automatically by the environment when the object is inserted in the Turtle Scene. 
These also vary according to the object’s type. The most common of them are the: All Area, Side 
Area and Volume. 
Once inserted in the Scene the ready-made object can be manipulated either dynamically using 
the handles that appear on it (possibly more than one) or by changing the values in the Property 
Editor’s corresponding fields. The dynamic manipulation causes the values on the Editor’s fields 
to change while the editing of the Editor’s values produce an immediate visual result to the object 
inserted in the Scene. 

Dragging and rotating the 
vectors the r, θ and φ 
coordinates change 

The r, θ, φ, x, y and 
z numerical values 
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Figure 5: Several ready made objects inserted in the Scene 

k) The XYZ coordination system defining the Scene’s 3d space 

The coordination system of MaLT is represented in the 3d Scene through three differently 
coloured arrows signifying the X, Y and Z axis. Although the arrows themselves are not directly 
manipulable, the user may observe different aspects of his constructions in the 3d space by 
dynamically manipulating -using a 3d controller- the position and direction of the 3 available 
cameras.  

 

 

 
 

 

 

 

 
1st Camera: Floor 

view (default) 
2nd Camera: Main 

view (default) 
3rd Camera: Side 

view (default) 
A random view using 

the Floor Camera 
Figure 6: The MaLT coordination System 

The X axis is represented by the red arrow, the Y by the green and the Z by the blue one. 

The Level 2 Objects 

a) The Turtle constructs 

The Turtle Constructions (e.g. 2d, 3d geometrical figures) visualized in the 3d Scene are the 
graphical outcomes of Logo commands and/or Logo procedures that the user types and runs at 
the Logo Editor. The line segments of which the figure consists are the traces the Turtle has left 
behind in each one of its logo-defined displacements.  
The properties of the Turtle constructions (e.g. the height, radius, angle, number of blocks/figures 
comprising it, position) can be defined in the Logo procedure in the form of varying quantities. 
For example in the procedure:  

The selected 
object’s properties 

The object’s 
handles 

The cylinder is the 
selected object 
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to parallelogram :a :b :c 
repeat 2 [fd(:a) rt(:c) fd(:b) rt(180-:c)] 
end 
the length of the two sides (a and b) as well as the degrees of the four angles (c and 180–c) are 
represented through the use of variables (:a, :b and :c). 
Thus, running at the Logo Editor again and again the same logo procedure attributing each time 
different numerical values to these variables, the user may generate in the Scene different Turtle 
Constructions. For example if the user runs the procedure “parallelogram” using the values 5, 5, 
90 for the :a, :b and :c variables, a square will appear in the Scene. If she chooses to run the 
procedure using the values 5, 7 ,90, a rectangle will appear and if she chooses to use the values 5, 
7, 60 a rhomboid will be generated in the Scene. 
Manipulating the Variation Tools, however, the user may dynamically manipulate the Turtle 
construction appearing in the Scene, attributing values to the variables in a continuous, possibly 
sequential, way. The Variation Tools allow student to observe the process in which a square turns 
into a rectangle and then into a parallelogram and not isolated instances of this process.  

2. Connection 

he Logo procedures and commands control the Turtle’s displacements inside a 3d space defined 
by a XYZ coordination system. Each displacement of the Turtle inside the Scene leaves behind a 
Trace, generating a 1d, 2d or 3d geometrical figure.  
If the Logo procedure includes variables (e.g. To triangle :a :b :c), in order to make the figure 
appear in the Scene, the user has to run the procedure at least once, using specific numerical 
values for the variables (e.g. triangle(20,20,60)). Clicking then on the Turtle’s trace (i.e. the 
figure generated), the Variation Tools appear.  
Manipulating either one of the Variation Tools (the 1dVT, the 2dVT or the VVT) the user 
manipulates the values of the variables, causing each time the procedure to run again taking into 
account the new values that appear on the corresponding Variation Tool.  
In this process, however, apart from manipulating the values of the variables, the user also 
manipulates the Turtle Construction in the Scene. Each time the procedure is run, the figure is 
regenerated according to the values appearing on the Variation Tool. Thus, manipulating the 
Variation Tools the user may manipulate dynamically the Turtle construction. 
The geometrical objects visualized in the environment’s Turtle Scene, however, are either 
constructed by the user when running logo procedures and commands or inserted by the user 
after selecting them from a library that offers numerous ready–made objects, such as cylinders, 
spheres, cones and circles. 
These objects, once inserted in the Scene, can be manipulated either dynamically using the 
handles that appear on it or by changing the values in the Property Editor’s corresponding fields. 
The dynamic manipulation causes the values on the Editor’s fields to change while any 
modifications to the Editor’s values produce an immediate visual result to the object inserted in 
the Scene. 

3. Activities 

MaLT is conceived as a programmable constructionist environment (Papert, 1980, Harel & 
Papert, 1991) providing multiple linked representations and functionalities to facilitate spatial 
thinking, 3d visualisation and means for the dynamic manipulation of 3d geometrical objects.  
The epistemological validity and the pedagogical design of the software aim to promote an 
integrated use of both formal mathematical notation inherited from Logo as a programming 
language and dynamic manipulation of geometrical objects in 3d space. The design of MaLT thus 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX I 

33 

suggests that 3d geometry is a field where mathematical formalism and graphical representation 
of objects and relations can be dynamically joined in interesting ways and that joint symbolic and 
visual control may have important potential for mathematical meaning-making processes.  
The main educational activities underlying the design of MaLT concern the development of 
student’s mathematical meanings for 3d geometrical notions when exploring (e.g. constructing, 
controlling, measuring, transforming) the behaviours of geometrical objects in programmable 3d 
geometrical constructions. 
Moreover, abilities such as spatial orientation and spatial visualisation come into play and are 
interwoven with the use of various frames of reference (e.g. an egocentric frame of reference 
related to the Logo commands ‘forward/backward, right/left’, a coordinate frame of reference, a 
display frame referring to the orientation and movement in the display screen etc.) and 
mathematical formalism. 

4. Pedagogical/intervention agenda 

1. Innovation vs acceptance - where does the DDA design stand? 
2. Distance to traditional curriculum - where does the DDA design stand? 
3. Status of representations traditional, innovative, to be handled, related to others etc. 
4. Scope for mathematization or only about mathematics? 
 
1. The design of Malt is innovative in relation to existing curriculum and pedagogy. 
2. The distance of MaLT to the traditional curriculum is dependent on its mode of use and the 
specific activities offered to students. As an example we will refer to the (familiar) ETL 
pedagogical plan in ReMath. Although it was referring to a topic met in the standard curriculum 
(i.e. angle in 3d space), the nature of the activities with MaLT were very different from those 
normally used in the mathematics textbooks, while the mathematical learning objectives differed 
substantially. Particularly, the design of tasks aimed at integrating different facets of angle 
embedded in different physical angle contexts which might challenge real and/or imagined body 
syntonicity within 3d space in multiple ways (i.e. walking or observe/pilot something flying). 
Additionally, the notion of angle was not considered a didactic topic in isolation (as it is usually 
the case in the official discourse of the National Curriculum) but rather as part of a conceptual 
field involving also the concepts interrelated with it (i.e. the notion of turn), the situation evoked 
by a given task (e.g. an opening-closing door simulation) and the available representations.  
3. The mathematical objects in MaLT are innovative. 
- The graphical representation of geometrical objects in TS can be considered as recognisably 
connected to representations used within the traditional curriculum. However, the study of 3d 
geometrical notions is not embedded in a systematic curricular activity but appears in a 
fragmented way in different parts of the mathematics textbooks. So, we consider students’ 
experience with the conventions used to represent geometrical objects in 3d space as rather 
limited. 
- The algebraic-like formalism in the form of programming language is more or less conventional 
and familiar to students, though the Logo programming environment demands a possibly 
unfamiliar degree of precision in entering the notation.  
- The dynamic manipulation through the variation tool is novel. As an example, dynamic 
manipulation in 1dVT takes place through dragging on the ‘number line’-like sliders. While 
number lines are commonly used and thus provide a basis of familiarity for making sense of the 
representation, the dynamic nature of the sliders offers a new way of visualising dynamic 
variation of variable geometrical objects. 
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4. Using MaLT is primarily about mathematising. In MaLT, students are able to capitalise upon 
the power of Logo as a programming language to explore and address mathematical topics such 
as geometrical properties and relations of 3d geometrical figures. The exploratory nature of the 
environment is expected to enhance the links between the symbolic representation of geometrical 
objects (involving the relations between them) and the dynamic manipulation of them using trial 
and error validated by visual inspection of the outcomes of experimentation. Thus the potential of 
the visual representations provided by the variation tools is to facilitate new kinds of 
understanding of the symbolic notation and a learning trajectory from trial and error to gradual 
mathematisation based on symbolic reasoning. 
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VI. Cruislet epistemological profile 

1. Objects 

The main objects that represented and manipulated with the Cruislet DDA are: 

 geographical map,  

 avatars 

 vectors  

 geographical coordinate system and  

 spherical coordinate system. 

The geographical map 

The geographical map is a terrain scene where the process of navigation takes place. It contains 
rich and valid geo-coded information which provides information of the various land features, 
cities, historical and tourist locations and geographic entities. The terrain scene is split into two 
map viewers. The one above contains a 3d representation of the geographic map of Greece while 
the one below contains a 2d map (Figure 1). Before inserting avatars, 3d geographical map can be 
dynamically manipulated by using the mouse as a navigation tool. In particular, the user moving 
the mouse across the 3d map can see a moving pointer with the symbol X. This pointer is 
connected with the box on the bottom left corner of the map. This box displays the description of 
the location, that is the geographical coordinates (Latitude and Longitude) and the height of the 
point of the 3d map that user points using the mouse (Figure 2). The user can navigate on the 3d 
map by clicking with the left mouse button. By clicking the right mouse button, the user affects 
the actual scale of representation of the area of the terrain and consequently the perspective of the 
map. Finally, the variation of the scale of the representation of the map is possible by rolling the 
wheel mouse button. Progressive focusing makes layers of information visible with respect to the 
proximity to the ground level.  
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Avatars 

Avatars are central objects of the DDA and their representation is connected with all the 
represented objects. The user can insert any number of avatars and navigate them upon the 3d 
geographical map. There is a choice between a number of ways to navigate an avatar, all 
navigation methods are connected between them and each one to a particular way of doing 
mathematics. Navigation is possible through the definition of an avatar displacement using either 
of two geometrical systems:  

1. a geographical (lat-long-height) coordinate system by setting the displacement location or  

2. a spherical (θ,φ, r) coordinate system by setting the direction and the length of the vector 
of displacement. 

Defining and executing a displacement is possible either by using a special GUI interface or 
through Logo programming (Figure 3). The navigation of the avatar can be considered as static, 
as it is possible though step – by step displacements, though a number of sequential 
displacements over time could be presented in a rather dynamic way similar to flight simulators. 
In addition to navigating the avatars, the user can navigate the ‘camera’, i.e. the viewpoint of the 
map which is always connected to an avatar. 

 

Figure 3: Cruislet environment – Avatar Tab – Logo Tab 

Vectors  

The user navigating avatars upon the geographical map actually defines the vector of 
displacement. The represented vector is connected with the displacement of the avatar acting as a 
trace. The vectors that are produced by a number of repeated displacements could form 
geometrical shapes and different geometrical curves. Moreover, the vectors could be added and 
multiplied by integers in a static way isolated from the behavior of the avatars. In particular, the 
user viewing the produced vectors as isolated entities could manipulate them by choosing the 
vectors to be added or by setting the integer with which the selected vector will be multiplied 
(Figure 4).  
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Figure 4: The vector menu 

Geographical coordinates 

The implication of the geographical coordinate system is connected to the 3d geographical map 
and the real geo-coded information and consequently to the navigation process of the avatar. 
Moreover, the geographical coordinate system is interconnected with the spherical coordinate one 
as the geographical coordinates of the displacement location are coincided with the end point of 
the vector. The user can manipulate the geographical coordinates (lat-long-height) of the 
displacement of the vector either by using the GUI input box or by using Logo programming. 

Spherical coordinates 

The spherical coordinate system can be used as an alternative way of defining the vector of 
displacement of the avatar. The variation of the parameter of the vector of displacement is 
possible either by using the input box or by dynamically manipulating the 3d controller. The 
vector representation on the screen is coincided with the defined vector of displacement. The user 
can also define the parameters of the vector of displacement by using Logo primitives. The 
spherical coordinate and the geographical coordinate systems are actually two interdependent 
representational systems as the variation of each one results in the correspondence alteration of 
the other one (Figure 4). 

 

 
Figure 4: Linkage between the selection of a destination and spherical - geographical coordinates’ 

values 
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Logo programming commands 

Displacement primitives are special objects within an available Logo language. Commands and 
parametric procedures can be written and executed containing any sequence and choice of 
displacements and displacement methods (figure 4). Moreover, through the use of the Logo 
programming language the software becomes constructionist in the sense that avatar trips can 
become parametric models of sequences of displacements. Procedures constituting half-baked 
microworlds can be designed in the sense that students can observe the trips they define and then 
change the procedures to make changes to the trips. Furthermore, procedures addressing more 
than one avatar can be defined making it possible to construct functional relationships between 
sequences of displacements of pairs of avatars. One such half-baked object was the “guess my 
flight” game where the user tries to guess the functional relationship either between two planes or 
between the input and the actual displacement of the plane.  

 

Figure 4: The Cruislet environment, (Logo procedure) 

2. Concepts 

At a first level, the concepts embedded in the software are those of location and orientation in 
two distinct geometrical systems, the geographical (Cartesian) and the spherical (polar). Points in 
space can be defined through any of these two systems interchangeably. The idea is that they co-
exist so the user can develop methods of how to choose between the two and in which 
circumstance related to the task at hand. Systematic sequences of points can also be defined 
either in a stepwise way through individual displacements or by means of functional definitions 
through Logo procedures. All geometrical and algebraic concepts deriving from this 
mathematical kernel are available for mathematization from the students such as geometrical 
shapes and curves, vector operations and functions. The background of Geography is considered 
as an application area for mathematics just as kinematics in MoPiX. The particular properties of 
Geographical space and geographical information provide a context for new ways of using 
mathematics and new ways of making them meaningful.  
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3. Activities 

The Crusilet DDA is distant both from the ways in which geometry, analytic geometry and 
functions are structured in the curriculum and from the software usually used in mathematics 
education. It was designed to provide a medium with which to question the curriculum structure 
and to stress the need for applied meaningful mathematics as a medium for mathematical 
meaning making. Consequently, it aims to innovative exploratory activities concerning the 
mathematics of positioning, orientation and functional relationships represented as curves in the 
context of 3d Geographical space. The design of the activities supported by Cruislet involves the 
engagement of students in the process of navigation avatars in any way by making choices 
between vectorial and Cartesian displacement controllers and the construction of avatar trips. A 
lot depends on the activities designed with the use of Cruislet and the context in which it is 
inserted. It is possible to make distinct connections with the standard curriculum and organize 
special activities for students to make these connections with school mathematics. It is also 
however possible to design more exploratory meaning making activities where students gradually 
mathematize the ways in which they construct avatar trips.  

4. Pedagogical/intervention agenda 

In designing the Cruislet DDA and the respective tasks we gave ourselves some distance from the 
traditional structure of the mathematics curriculum and looked for learnable mathematics 
concerning position and orientation in geographical three dimensional (3D) space. In particular, 
we adopted the approach of students’ gradual mathematization within game-like activities in 
problem situations that are experientially relevant to students. Our intention was to involve 
students in activities through which they would use symbols, make and verify hypotheses in 
order to solve a particular real problem in a rich learning environment. Our agenda can be 
described at two levels, a more global level of steering the mathematics education community 
towards re-considering what mathematics is rich for meaning-making and a more classroom 
oriented level of how students can see meaning in existing curriculum mathematics.  
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VII. Application of the DDA profile framework to NetLogo 

To further assess the profile framework, I applied it to software to which it had not been applied 
before, the NetLogo agent-based modeling environment. 
I’m completing this epistemological profile of NetLogo with emphasis on a) connections to the 
mathematics of systems that change over time, and b) more general notions of modeling in the 
form of agent-based code and the visual and quantitative/graphical representations of that 
executed code. 
 
Here is the NetLogo profile: 

1. Objects 

There are four main “computational objects”, or components from which NetLogo models are 
constructed: agents, the properties owned by agents, the behaviors executed by agents over time, 
and the ‘world’ or global properties. 

Representations 

Agents 

Agents are dynamic objects that represent components (such as atoms, animals or individuals) of 
a system. Agents are akin to the ‘physical objects’ of the MoPiX system, except that it is assumed 
that many duplicates of a given agent type will exist in a model. Agents are represented as 
computational objects in the computer code based representation of the model, and visual objects 
in the visualization of the model as it is executed. 

Features: 
Dynamic / Static: agents change over time 
Mathematical / Computational: agent behavior and properties/associated quantities are 
determined computationally 
Direct Manipulation / Menu Driven: (and Code-Driven): agents are primarily controlled via 
computer code, but can be also accessed via a visualization and properties inspected/manipulated 
via a menu and dialog box 
Compatible / Innovative: Though there are considerable beneficial uses of NetLogo for 
mathematics education, it is not easily compatible with most US mathematics curriculum. It is 
more easily integrated with standard science curriculum. 

Agent Properties 

Agents have a number of default properties such as shape, color, location, and so forth, and users 
can create any number of additional parameters for agents. Agent properties are primarily 
represented in the computer code based representation of a model, though they are also often 
represented as a visual property of each agent. 

Features: 
Dynamic / Static: agent properties change as a model is executed 
Mathematical / Computational: properties are updated as a result of the execution of computer 
code, or by hand by the user 
Direct Manipulation / Menu Driven: (and Code Driven)  
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Compatible / Innovative: not easily compatible with most US mathematics curriculum. 

Agent Behaviors 

Agent properties are changed by executing agent behaviors over time: for example, agents can 
move forward each “tick” to update their position, change color per “tick”, or engage in more 
complex behaviors (such as ‘eating’ one another, adjusting properties based on the properties of 
agents spatially near them, and so on). Behaviors are represented primarily in computer code, but 
are often evident in the visual behavior of the model as it executes. 

Features: 
Dynamic / Static: once behavior code is defined, they remain the same over the period of 
execution of the model 
Mathematical / Computational. 
Direct Manipulation / Menu Driven: n/a 
Compatible / Innovative: not easily compatible with most US mathematics curriculum. 

World Properties 

World properties are values representing sums, means, and other aggregations of agent properties 
that model some important aspect of the system of interest. For example, in a model of 
population growth, individual agents reproduce and their reproduction is driven by ‘local’ 
circumstances that depend on spatially near agents, but users are ultimately interested in the 
overall population, a world-level property. World properties are primarily represented via plots 
over time, but can also often be inspected visually (for example, the number of agents in a system 
can be counted in the visual representation) and are included as global variables or reporters in 
the computer code. 

Features: 
Dynamic / Static: quantities change as  
Mathematical / Computational. 
Direct Manipulation / Menu Driven: n/a 
Compatible / Innovative: Although computational code is typically not used in mathematics 
classrooms, the global quantities of interest in NetLogo models are frequently represented as time 
series plots, a familiar and compatible object for mathematics and science classrooms. 

2. Concepts 

There are three main “mathematical concepts” that are embedded in the notion of a NetLogo 
model: the system state, a “tick” or delta of time representing a computational derivative (that is, 
quantitative changes in the system for a ‘tick’ or single sliver of time), and a computational 
integral (that is, quantitative patterns in the system over several ‘ticks’ or slivers of time). These 
concepts are not strictly mathematical – indeed, they are primarily computational, but in 
NetLogo’s role as an alternative means to model systems over time, may nicely fit with 
mathematical models of systems based in calculus and differential equations. 

System State 

At any given ‘tick’ or instantiation of a model, agents and the model world possess properties 
that model some aspect of the system they represent. These values can be considered solutions to 
some problem: for example, what a population can be expected to be given certain assumptions 
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after n iterations of time, or what potential outcomes one might expect for a gas trapped inside of 
a container and heated. 
Because system states are obtained computationally and often depend on stochastic and local 
interactions, they should be considered specific instantiations of possible solutions, rather than 
complete or absolute solutions.  

Computational Derivative 

Because agent behaviors ultimately define how agent-based and global properties unfold, and 
because behaviors are defined in terms of how those agents and that world will behave in the 
context of a single execution or ‘tick’, one can think of a single execution of a model’s rules and 
the resulting quantitative changes in quantities of interest as a ‘computational derivative’ at a 
given point in the model’s execution time.  

Computational Integral 

As agent behaviors are executed over several ticks, trends over time in quantities of interest can 
be tracked, plotted, and otherwise computed. This can be measured as the accumulation of, or 
trends in, quantities over time or the ‘computational integral’ after a given interval in the model’s 
execution time. 

3. Connections 

All of the objects described above are primarily driven by computer code, though many are 
alternatively accessible via menu-based manipulation to access dialog boxes that reveal the 
properties of individual agents: 
 
 

 
 

 
 

 
 

VIII. Activities 

NetLogo is primarily a modeling tool. The objects and connections 
between objects support this task by encouraging the user to consider 
the elements that comprise systems and the ways that those elements behave, in order to 
systematize and represent those systems computationally. After executing that code, 
quantitative/mathematical trends of the system can be examined via plots and other means of 
collecting quantitative information from the system model.  

NetLogo is most frequently used in courses that utilize mathematical modeling for specific 
applied purposes, such as science classes. A large library of preexisting models and collections of 
models addressing a number of scientific and mathematical topics already exist, and can be given 
to students in the context of existing curriculum for students to use for exploration activities. 

“Procedures Tab”/Computer 
Code:  
 

Agent Properties 
Agent Behavior 
Global Properties 

“World”/Visual 
Representation: 
 

Agent Properties 
Agent Behavior 
Global Properties 

Time Series Plots: 
Global Properties 

Agent Inspector 
Dialog/Menu-Driven: 
Agent Properties 

Controls/executes to produce 

(System State: 
Existing values of 
agent and global 
properties) 

Is represented in 

Individual agents 
can be inspected 
and manipulated 

Global quantities over 
time produce 



ReMath / IST4-26751 Deliverable 18: Integrated Theoretical Framework Version C – APPENDIX I 

44 

These models can also be manipulated easily, moving the task from primarily exploration-based 
to modeling-based. 

NetLogo also enables users to construct agent-based models from ‘scratch’, although activities 
such as these are more difficult to incorporate easily into typical mathematics and science 
classrooms.  

4. Pedagogical/Intervention Agenda 

There are three levels at which NetLogo can be incorporated into classrooms or other educational 
settings: first, existing models can be presented to students for exploration and interaction. 
Second, existing models can be given to students as “seed” models to be explored, but then 
manipulated to model similar systems or systems with varying behaviors or parameters. Finally, 
NetLogo can be used as an open-ended programming environment – primarily for the modeling 
of multi-agent systems, but indeed for any reasonable computational task. 

NetLogo is particularly well suited for mathematization tasks: students can observe specific 
instantiations of mathematical trends and attempt to mathematize those trends, for example, or try 
to match their computational models to mathematical models of scientific or social phenomena. 


