ReMath / IST4-26751

Aplusix-Tree: User manual

Aplusix-Tree: User manual
June 22, 2007
1. Introduction
From the beginning, Aplusix uses the usual representation of algebraic expressions (also called natural representation), the one which is used by teachers and students on paper and board. “Use” means here both display and edit.

In the framework of the ReMath project, a new representation has been added to Aplusix: it is a tree representation. In this representation, operators are placed in nodes of the tree, having their arguments (also called operands) as children. Leaves contain numbers and variables.

A mixed representation has also been added; it combines the usual representation and the tree representation.

From the beginning, Aplusix uses scaffolding in the editing of algebraic expressions: Only known operators are possible and the arity (number of operands) of the operator is respected. This scaffolding has been extended to the tree representation and the mixed representation. However, a mode without scaffolding has been added for the tree representation.
Note that, in a tree, leaves are nodes having no child and internal nodes are nodes having at least one child.

2. Three representation systems
Aplusix has now 3 representation systems. The first one is the usual representation system.

The second one is the tree representation system. In this system, operators (+, –, *, /, ^, sqrt, =, ≠, <, ≤, >, ≥, and, or, not) are placed in the internal nodes of the trees while variables and numbers (canonical representations of integers and decimals) are placed in the leaves. See Figure 1.
[image: image1.png]
Figure 1: Tree representation of the expression whose usual representation is displayed on the right.

The third one is the mixed representation system: it is a tree representation in which leaves can contain usual representations. See Figure 2.
[image: image2.png]
Figure 2: Partially expanded tree representation of an expression.

3. Four representation modes
Two interaction modes
The two interaction modes are with scaffolding and without scaffolding.
We consider three notions linked to algebraic expressions:

· well-formed expressions,

· quasi-well-formed expressions,

· ill-formed expressions.

The notion of well-formed expression comes from the definition: it is an expression in which operators have expressions as operands, with the right number and the right types. Ill-formed expressions are objects that look like expressions, but do not respect the definition on some points. It is necessary to represent and manipulate ill-formed expressions because: (1) one cannot build a well-formed expression without intermediate ill-formed stages; (2) one cannot expect that students will always produce well-formed expressions.
We call quasi-well-formed expressions, expressions in which places for operators contain correct operators and the operators have a correct number of operands, including empty operands represented as empty boxes or question marks or something else.
From the beginning, Aplusix uses the usual representation of algebraic expressions and quasi-well-formed expressions: when an operator is recognized, a correct number of operands is assigned to this operator by adding, when necessary, empty operands (question marks). This is a design choice. It implements a scaffolding mechanism: the student cannot build any sort of ill-formed expressions.
For each representation system, one can choose to implement an editor which allows any sort of ill-formed expressions or which limits its field to quasi-well-formed expressions.

Four representation modes
In Aplusix, it has been chosen:
· to limit the usual representation to quasi-well-formed expressions (as in the past – with scaffolding),

· to implement a tree representation with the two interaction modes (with and without scaffolding),

· to limit the mixed representation to quasi-well-formed expressions (with scaffolding).

This leads to four “representation and interaction modes” which are called “representation modes” for the sake of simplicity.

Usual representation = Usual representation + Quasi-well-formed expressions. See figure 3.
Free tree representation = Tree representation + Ill-formed expressions (any sort): one can put any string of characters in the nodes of the tree; one can give any number of successors to a node of the tree. See figure 4.
Controlled tree representation = Tree representation + Quasi-well-formed expressions: one can put only known operators in the internal nodes of the tree; one can put only variable and basic numbers (sequences of digits with possibly a minus sign before, with possibly a decimal separator inside) in the leaves of the tree; the correct number of successors of a node is maintained by the software. See figure 3.
Mixed representation = Mixed representation + Quasi-well-formed expressions. This is similar to the Controlled tree representation except that:
· leaves may contain any sort of quasi-well-formed expressions in the usual representation system,

· “+” and “–”buttons allow expanding and collapsing the tree.

[image: image3.png]
Figure 3: Example of quasi-well-formed-expressions: on the left, in the tree representation system; on the right, in the usual representation system.
[image: image4.png]
Figure 4: Example of ill-formed trees which are not quasi-well-formed: on the left, internal nodes do not contain known operators; on the right, “/” has 4 operands.

Changing the representation mode in Aplusix
Reasoning processes develop steps in Aplusix. Each step is displayed as a box. When the representation mode is free, the student can choose it independently for any step. The choice is made with the popup menu (right button of the mouse) and the “Representation” item. The representation mode can be changed at any time except when the representation mode is “Free tree representation” and the expression is not quasi-well-formed.
4. Three minus signs
Aplusix considers three different meanings of the minus sign:
· the minus sign of a number, like in –2,

· the opposite operator which has one operand, like in –x and in –(2+x),

· the subtraction which has two operands, like in x–2 and in 5–y.

Thus x-2 has 3 correct tree representations, see figure 5.

[image: image5.png]
Figure 5: The three representations of x-2. On the left, “sign of a number”, in the middle, “opposite”, on the right, “subtraction”.

5. Basic editing of trees
Trees are made of nodes (internal nodes and leaves). When a node N is just above a node P, N is the father of P and P is a son of N.
Basic editing of trees in the free tree representation
In the free tree representation, at any time, a father or a son can be added to a node. When the mouse is over a node, a click allows editing the node (figure 6). When the mouse is below a node and close to this node, a drawing proposes to create a new node, which is created if a click occurs (figure 7). When the mouse is above a node and close to this node, a drawing proposes to create a father, which is created if a click occurs (figure 8 and 9).
[image: image6.png]
Figure 6: On the left, when the mouse is close to “4”, a blue rectangle indicates that a click will edit this node. In the middle, a click has been performed and the node is edited in a linear edition window. On the right, after the modification of the node and a hit on “return”, the tree is modified.
[image: image7.png]
Figure 7: On the left, when the mouse is close to “+”and below, a blue drawing proposes to add a son to this node (the place of the son can be chosen by moving the mouse) .On the right, a click has been performed, a son has been added and is being edited.
[image: image8.png]
Figure 8: On the left, when the mouse is close to “+”and above, a blue drawing proposes to add a father to this node .On the right, a click has been performed, a father has been added and is being edited.

[image: image9.png]
Figure 9: On the left, when the mouse is close to “+”, above and a bit on the left or the right, a blue drawing proposes to add a “father with another son” to this node .On the right, a click has been performed, a “father with another son” has been added and the father is being edited.

In the free tree representation, one can write any sequence of characters in nodes (internal nodes and leaves) and give any number of sons to a node.
Basic editing of trees in the controlled tree representation
In the controlled tree representation, only quasi-well-formed expressions are manipulated, which means that:

· Only correct operators can be placed in internal nodes,

· Each internal node must have a correct number of sons,
· Leaves must contain numbers (sequences of digits with possibly a minus sign before, with possibly a decimal separator inside) or letters or nothing.
When an internal node is edited:

· If an incorrect operator is given, it is refused with a message like “zz is not an operator”,

· If an operator requiring n operands is given in a place having more than n sons, it is refused with the message like “/ requires exactly two operands”,

· If an operator requiring n operands is given in a place having less than n sons, it is accepted and empty sons are added to respect the right number of operands.
When a leave is edited:

· If a variable or a number (sequence of digits with possibly a minus sign before, with possibly a decimal separator inside) is given, it is accepted,

· If a correct operator is given, it is accepted and empty sons are added to respect the right number of operands,

· In the other cases, the input is refused with a message like “3x is incorrect, one must put here a variable, an integer, a decimal or an operator”.
In the controlled tree representation, there is scaffolding:

· When an operator is added, Aplusix creates automatically the correct number of empty sons,

· There is no proposition of a son for leaves,

· There is no proposition of a son for operators which cannot have additional sons.
Basic editing of trees in the mixed representation
In the mixed representation, internal nodes work like in the controlled tree representation. Leaves contain expressions in the usual representation. They are edited in this mode with an insertion point.

In the mixed representation, when the mouse is near or over a node, a “+” or “–” button appears on the left of the node, allowing to expand or to collapse the tree (see figure 10). These buttons do not appear where such an operation is not possible (one cannot expand leaves containing letters or positive integers or positive decimals).
[image: image10.png]
Figure 10: A click on the “+” button of the 1st tree expands the node, providing the 2nd tree.
 A click on the “–” button of the 3rd tree collapses the node, providing the 4th representation (usual one).

6. Syntax verification

The popup menu contains a “Syntax” item. When this item is chosen, Aplusix verifies the syntax of the current step and says “The expression is correct” or opens a window with error messages. See figure 11.

[image: image11.png]
Figure 11: Verification of the syntax. When it is incorrect, a window provides a list of errors. A click on a particular error message indicates the part of the expression where this error occurs.

7. Delete and backspace in trees
Delete and backspace in empty nodes

When a node is edited and is empty, a hit on “Delete” or “Backspace” means suppresses this node:
· If it is a leaf, it is suppressed; in the controlled tree and mixed modes, the father is also suppressed if only one son remains,
· If it is an internal node with only one son, the node is suppressed and the son takes its place,

· If it is an internal node with several sons, the sub-tree having this node as a root is suppressed.

Delete and backspace over a selection

When there is a selection, a hit on “Backspace” means “suppress the selection”. The father of the selection is also suppressed if only one son remains and the father contains an operator which is associative and commutative (+,*,and, or). See figure 12.
When there is a selection, a hit on “Delete” means “suppress the selection, replace it by an empty node and edit this node”. See figure 12.
[image: image12.png]
Figure 12: On the left, 2+3 is selected. If one hits “Backspace”, one gets the tree in the middle (2+3 has been suppressed and “*” too because there remains only one son). If one hits “Delete”, one gets the tree on the right (2+3 has been suppressed and replaced by an empty node which is being edited)

8. Selection in trees

The selection in trees is made by moving the mouse with the left button down. Aplusix always selects a sub-tree or several sub-trees having the same father, see figure 13.

Aplusix also allows adding and subtracting elements to a selection with control-click, see figure 14.

[image: image13.png]
Figure 13: The left button is pressed down on x, the mouse is moved toward y and the left button is released. x and y appear in the selection. Actually, the selection is an expression and contains also the father operator. If one copies the selection to the clipboard, the clipboard will contain x*y.

[image: image14.png]
Figure 14: On the left, 2+x is selected. If one makes a control-click on 5, 5+x is added to the selection (5 cannot be added alone to the selection because it has not the same father.

9. Cut, copy, paste, drag and drop

Cut a selection

“Cut a selection” works like backspace over a selection at the interface. The difference is that cut a selection places the selected expression in the clipboard.

Copy a selection

“Copy a selection” places the selected expression in the clipboard.
Paste over a selection

“Paste over a selection” replaces the selection by the expression from the clipboard. The expression can come from a cut or a copy of an expression previously made in the same window or from a cut or a copy previously made in another application.
Before doing the paste, Aplusix analyses the content of the clipboard: it is accepted if this content is a text, not too big, and looks like an expression in a linear form (e.g., 2x^2+4/3).

If the step of the selection is in a usual representation, the paste is made in the usual representation.

If the step of the selection is in a tree representation (free or controlled), the paste is made in the tree representation.

If the step of the selection is in a mixed representation, the paste is made in the representation of the expression of the clipboard.
Paste on a node proposal

It is also possible to paste on a node proposal (see figures 15 and 16):
· when it is an empty leaf,

· when it is a son,

· when it is a father with a brother.

[image: image15.png]
Figure 15: On the left, there is a proposition of a son. If one types ctrl-V, one pastes the clipboard content (here, the clipboard contains y+5) at this place and gets the tree on the right.

[image: image16.png]
Figure 16: On the left, there is a proposition of a father with a brother. If one types ctrl-V, one pastes the clipboard content (here, the clipboard contains y+5) at the place of the brother and has to input the father operator, see on the right.

Drag and drop

Drag and drop in the trees is similar to cut and paste on a proposition of a node. One can use drag and drop to change the order of the sons of a node (see figure 17) or to move a selection far from its place (see figure 18).
[image: image17.png]
Figure 17: On the left, 2+4 has been selected and is being dragged. The mouse cursor is placed so that a proposition of a son appears on the right of “=” sign. Then the drop is made and one gets the tree on the right.

[image: image18.png]
Figure 18: On the left, 4 has been selected and is being dragged. The mouse cursor is placed so that a proposition of a father and a brother appears on the left of 3. Then the drop is made and one gets the tree on the right. To continue solving the equation, one can enter “*” the delete the empty node and the “/”.
10. Second view

The “Step” menu contains a “Second view” item for having a window with another representation of the current step, see figure 19. This representation can be:

· a usual representation,

· a tree representation,

· a tree of monomials (a mixed representation in which the leaves contain monomials – see figure 19).

[image: image19.png]
Figure 19: A second view of the sort “tree of monomials” has been activated.
When the current step is modified, the modification is also made on the second view. Of course, when the step is in the free tree representation with an ill-formed expression which is not quasi-well-formed, the second view is not displayed in the usual representation or as a tree of monomials.

When the student changes the current step to another one, the second view represents the expression of the new current step.
11. Activities with trees

Microworld activities

Aplusix can be used as a microworld. This is still possible with tree representations. Researchers and teachers can prepare activities in this general framework. When Aplusix is used as a microworld, it produces some feedback (verification of the syntax, verification of the equivalence) but it generally cannot verify if all the instructions of the researchers and teachers are respected.
Use of trees in pre-existing activities

Classical activities (calculate, expand and simplify, factor, solve) can be done using a tree representation. In this case, Aplusix will perform the usual verifications but it will not verify whether trees have been used. See example in figure 20 for numerical calculations.
[image: image20.png]
Figure 20: Example of calculation with a tree representation. On the left, the student selects an elementary calculation and hits “Delete”. At this moment (on the right) the selection is suppressed and a node is edited at its place so that the student can type the result of the calculation.

Sections of problems with simple answers using a tree representation

When a section of a problem uses a simple answer (see AplusixEditor below), the type of representation can be chosen by the author of the problem. This allows giving instructions like:
An expression is the sum of 5 and of the product of 3 and x. Represent this expression as a tree.

and to have the step for the answer in the tree representation (free or controlled, as chosen by the author) without the possibility to change the representation. See figure 21.
[image: image21.png]
Figure 21: The student has to represent an expression as a tree from a description in natural language. Here, the student has already typed “+” and “5”.

Transform a usual representation into a tree representation

This is a new standard type of exercise in Aplusix which can be used in sections of problems, see figure 22.
[image: image22.png]
Figure 22: The student has to represent an expression as a tree from a description in a usual representation. Here, the student has finished building the tree.
Transform a tree representation into a usual representation

This is another new standard type of exercise in Aplusix which can be used in sections of problems, see figure 23.
[image: image23.png]
Figure 23: The student has to represent in a usual representation an expression given in a tree representation.
12. Verification of a tree answer
When the answer is required in a tree representation and has to be compared to the expected answer, the following situations can occur:

1) The student’s and the expected answers are the same if we consider associativity and the different possibilities of the minus sign: the student’s answer is accepted and Solved is written.

2) We are not in the case 1) but the student’s and the expected answers are the same if we consider commutativity. The student’s answer is refused with the following message:

This is almost the expected answer. Please, put the expressions in the right order.

3) We are not in the cases 1) and 2) but the student’s and the expected answers are equivalent. The student’s answer is refused with the following message:
This is not the expected answer. You may have used some calculations. Please, give an answer without calculations.

4) We are not in the cases 1), 2) or 3). The student’s answer is refused with the following message:

This is not the expected answer and it is not equivalent to the expected answer.
13. Trees in AplusixEditor

Transform a usual representation into a tree representation or a tree representation into a usual representation
These are two new standard types of exercises which can be used only in sections of problems.
Access from the Text part of a section
This access is shown in figure 24. The adequate choice opens the editor of Aplusix (figure 25) to input the expression to be transformed. The input is made in the usual representation, except if the user changes the representation with the popup menu. The input is stored in the representation that will be used by Aplusix (usual representation for “transform into a tree” – figure 25; tree for “transform into a usual representation” – figure 26).
[image: image24.png]
Figure 24: The first two items of the popup menu of the Text part of a section concern the two new standard types of exercises: transform into a tree and transform into a usual representation.
[image: image25.png]
Figure 25: When transform into a tree or into the usual representation has been chosen, the user inputs the expression with the editor of Aplusix.

[image: image26.png]
Figure 26: When transform into a tree has been chosen, the expression is stored in a way corresponding to a usual representation. The texts “Write” and “as a tree” can be modified at this place. The only correct way to modify the expression consists in placing the insertion point inside and choosing “Edit the expression” in the popup menu.

[image: image27.png]
Figure 27: When transform into a usual representation has been chosen, the expression is stored in a way corresponding to a tree representation (with “°” after the operators and “¤” for implicit operators). The texts “Write” and “as usual” can be modified at this place. The only correct way to modify the expression consists in placing the insertion point inside and choosing “Edit the expression” in the popup menu.

In the case of “transform into a usual representation”, there is nothing more to do. The answer has been prepared and can be seen in the Answer panel.

In the case of “transform into a tree representation”, one has to go to the Answer panel in order to choose the interaction mode (free or controlled), see figure 28.
 [image: image28.png]
Figure 28: At the bottom of the Answer panel, one has to choose the representation mode.

Note that the expression can be edited and modified in the Answer panel. In this case, when the editing window is closed, both the answer and the expression in the text part are updated.

Access from the Answer panel

It is possible to choose “transform into a tree” or “transform into a usual representation” from the Answer panel, see figure 29. In this case, the Text of the section is automatically filled.
[image: image29.png]
Figure 29: The Answer panel of a new section. One can choose “transform into a tree” or “transform into a usual representation” in this panel.
Use of simple answers
As previously in Aplusix, it is possible to write text in the text part of a section, and to use a simple answer in the Answer panel. But now, there is a combo-box which allows choosing the mode of representation, see figure 30.
[image: image30.png]
Figure 30: The representation that will be used by the student for the answer is chosen in the Answer panel.

In the text part, it is possible to insert algebraic expressions using the “Edit the expression” item of the popup menu. In this case, they will be recorded (then displayed by Aplusix) in the representation mode used during the editing. They can thus appear as trees or usual expressions in Aplusix.

User manual of Aplusix-Tree
1/19

